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Punch Powertrain develops complex SoC-based motor control

▪ Powertrains for hybrid and electric vehicles

▪ Hardware choice through simulations

▪ Traditional microcontroller too slow

▪ No experience designing FPGAs!

Link to video

✓ Designed integrated E-drive: Motor, power electronics and software

✓ 4 different control strategies implemented

✓ Done in 1.5 years with 2FTE’s

✓ Models reusable for production

✓ Smooth integration and validation due to development process

https://www.mathworks.com/videos/faster-and-more-accurate-control-of-switched-reluctance-electric-motors-using-zynq-soc-highlights-121425.html
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Key trend: Increasing demands from motor drives
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Systems-on-Chip for motor and power control
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Key Trend: ~60% FPGA projects contain embedded processors
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Challenges in using SoCs for motor and power control

?

?
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?

Why use Model-Based Design to develop motor control 

applications on SoCs?

??
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Hardware/software partitioning

Target to ARM
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Programmable 

Logic
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Floating point to Fixed-Point made easy

Convert to Fixed-Point at lowest 

implementation cost but still meeting 

system level specifications

Tolerance specification to 

guide Fixed-Point conversion
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Automatic Fixed-Point optimization

Trade-off Fixed-Point versus 

Floating Point types

Automatic validation of compliance 

to tolerance specifications
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Code Generation

AXI
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How are you going to debug your FPGA designs?

Some of the things you have to worry about:

▪ How to capture high-rate or internal signals

▪ How to analyse my data?

▪ Can I automate this?

▪ Are my measurements reproducible?
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Integrate debugging with MATLAB
FPGA Data Capture

MATLABJTAG

Automating the analysis of 

large datasets

Reproducing real-world 

scenarios in simulation

Easy access to internal 

FPGA signals
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Challenge
Design and implement a robot emergency braking system with minimal 

hardware testing

Solution
Model-Based Design with Simulink and HDL Coder to model, verify, and 

implement the controller

Results
▪ Cleanroom time reduced from weeks to days

▪ Late requirement changes rapidly implemented

▪ Complex bug resolved in one day

Link to user story

“With Simulink and HDL Coder we eliminated 

programming errors and automated delay balancing, 

pipelining, and other tedious and error-prone tasks. 

As a result, we were able to easily and quickly 

implement change requests from our customer and 

reduce time-to-market.”

Ronald van der Meer 

3T

A SCARA robot.

3T Develops Robot Emergency Braking System with 

Model-Based Design

https://www.mathworks.com/company/user_stories/3t-develops-robot-emergency-braking-system-with-model-based-design.html
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Key Takeaways

Meet stringent requirements 

and reduce costs

Manage design complexity and improve team collaboration

Reduce hardware testing 

time up to 5x

✓



21

How to get started?

Public

On-Site

▪ Embedded Systems

▪ DSP for FPGA Design

▪ Xilinx Zynq SoCs


