
1© 2015 The MathWorks, Inc.

Hardware and Software 

Co-Design for 

Motor Control Applications

Stephan van Beek



2

Punch Powertrain develops complex SoC-based motor control

▪ Powertrains for hybrid and electric vehicles

▪ Hardware choice through simulations

▪ Traditional microcontroller too slow

▪ No experience designing FPGAs!

Link to video

✓ Designed integrated E-drive: Motor, power electronics and software

✓ 4 different control strategies implemented

✓ Done in 1.5 years with 2FTE’s

✓ Models reusable for production

✓ Smooth integration and validation due to development process

https://www.mathworks.com/videos/faster-and-more-accurate-control-of-switched-reluctance-electric-motors-using-zynq-soc-highlights-121425.html


3

Key trend: Increasing demands from motor drives



4

Systems-on-Chip for motor and power control



5

Key Trend: ~60% FPGA projects contain embedded processors



6

Challenges in using SoCs for motor and power control

?

?



7

?

Why use Model-Based Design to develop motor control 

applications on SoCs?

??



8

Load motor

Motor under test 

(with encoder)

ZedBoard

FMC module: 

control board + 

low-voltage board

Mechanical 

coupler

Zynq SoC 
(XC7Z020)



9



10

Embedded System

SoC

Hard Processor

Linux / VxWorks

Reference

Framework

Programmable

Logic

Reference

Framework

System Simulation Test Bench

Conceptual workflow targeting SoCs

Model of 

Motor & 

Dyno

Motor & 

Dyno

Hardware

SoC

Programmable

Logic

Algorithm

HDL

Code

Algorithm

C

Code

Algorithm

C

Model

Algorithm

HDL

Model

Algorithm 

developer

Hardware 

designer
Embedded 

software

engineer



11

Hardware/software partitioning

Target to ARM

Target to 

Programmable 

Logic



12

B
e
tt
e

r
W

o
rs

e

S
y
s
te

m
 B

e
h
a
v
io

r

Implementation Efficiency
BetterWorse

Failure

Target

constraints

Precision 

Thresholds

Efficient embedded designs 

Considerations

- Design Time

- Resource usage

- Flexibility

- Ease of design

- ….
Infeasible

Target

constraints

Precision 

Thresholds



13

Floating point to Fixed-Point made easy

Convert to Fixed-Point at lowest 

implementation cost but still meeting 

system level specifications

Tolerance specification to 

guide Fixed-Point conversion



14

Automatic Fixed-Point optimization

Trade-off Fixed-Point versus 

Floating Point types

Automatic validation of compliance 

to tolerance specifications



15

Code Generation

AXI



16



17

How are you going to debug your FPGA designs?

Some of the things you have to worry about:

▪ How to capture high-rate or internal signals

▪ How to analyse my data?

▪ Can I automate this?

▪ Are my measurements reproducible?



18

Integrate debugging with MATLAB
FPGA Data Capture

MATLABJTAG

Automating the analysis of 

large datasets

Reproducing real-world 

scenarios in simulation

Easy access to internal 

FPGA signals



19

Challenge
Design and implement a robot emergency braking system with minimal 

hardware testing

Solution
Model-Based Design with Simulink and HDL Coder to model, verify, and 

implement the controller

Results
▪ Cleanroom time reduced from weeks to days

▪ Late requirement changes rapidly implemented

▪ Complex bug resolved in one day

Link to user story

“With Simulink and HDL Coder we eliminated 

programming errors and automated delay balancing, 

pipelining, and other tedious and error-prone tasks. 

As a result, we were able to easily and quickly 

implement change requests from our customer and 

reduce time-to-market.”

Ronald van der Meer 

3T

A SCARA robot.

3T Develops Robot Emergency Braking System with 

Model-Based Design

https://www.mathworks.com/company/user_stories/3t-develops-robot-emergency-braking-system-with-model-based-design.html


20

Key Takeaways

Meet stringent requirements 

and reduce costs

Manage design complexity and improve team collaboration

Reduce hardware testing 

time up to 5x

✓



21

How to get started?

Public

On-Site

▪ Embedded Systems

▪ DSP for FPGA Design

▪ Xilinx Zynq SoCs


