MATLAB EXPO 2018

Hardware and Software Co-Design for Motor Control Applications

Stephan van Beek

A MathWorks

Punch Powertrain develops complex SoC-based motor control

- Powertrains for hybrid and electric vehicles
- Hardware choice through simulations
- Traditional microcontroller too slow
- No experience designing FPGAs!

- Designed integrated E-drive: Motor, power electronics and software
- ✓ 4 different control strategies implemented
- ✓ Done in 1.5 years with 2FTE's
- ✓ Models reusable for production
- ✓ Smooth integration and validation due to development process

Key trend: Increasing demands from motor drives

Systems-on-Chip for motor and power control

Key Trend: ~60% FPGA projects contain embedded processors

MATLAB EXPO 2018

MathWorks[®]

Challenges in using SoCs for motor and power control

Why use Model-Based Design to develop motor control applications on SoCs?

FMC module: control board + low-voltage board

Motor under test (with encoder)

Conceptual workflow targeting SoCs

Hardware/software partitioning

MathWorks[®]

Efficient embedded designs

12

Floating point to Fixed-Point made easy

Automatic Fixed-Point optimization

Code Generation

How are you going to debug your FPGA designs?

Some of the things you have to worry about:

- How to capture high-rate or internal signals
- How to analyse my data?
- Can I automate this?
- Are my measurements reproducible?

Integrate debugging with MATLAB FPGA Data Capture

3T Develops Robot Emergency Braking System with Model-Based Design

Challenge

Design and implement a robot emergency braking system with minimal hardware testing

Solution

Model-Based Design with Simulink and HDL Coder to model, verify, and implement the controller

Results

MATLAB EXPO 2018

- Cleanroom time reduced from weeks to days
- Late requirement changes rapidly implemented
- Complex bug resolved in one day

"With Simulink and HDL Coder we eliminated programming errors and automated delay balancing, pipelining, and other tedious and error-prone tasks. As a result, we were able to easily and quickly implement change requests from our customer and reduce time-to-market."

Ronald van der Meer

Key Takeaways

Manage design complexity and improve team collaboration

How to get started?

- Embedded Systems
- DSP for FPGA Design
- Xilinx Zynq SoCs