

Frontload the design, V&V and certification of software-intensive mechatronic systems by adopting the Digital Twin approach

Mathieu Dutré – Business Development & Innovation Manager, MBSE Mathworks EXPO – Ghent – June 21th

Unrestricted © Siemens AG 2018

Realize innovation.

What to remember of this presentation?

- Siemens supports engineering teams in delivering high-quality mechatronic systems by adopting the "Digital Twin" approach
- Mathworks supplies us and customers with the necessary tooling to optimize development time
- Due to the tight integration of Siemens Simcenter products and MATLAB/Simulink, the customer is able to:
 - Optimize the engineering process and workflow
 - Balance multi-attributes like performance, fuel economy and comfort using physical models
 - Significantly reduce the development time and cost by frontloading V&V and calibration

SIEMENS

Who am I?

Role:

Senior Business Owner, MBSE portfolio
 Simulation and Testing solutions Division within Siemens PLM

Location:

SISW NV – Leuven - Belgium

Job content:

- Strategy and product roadmap for the Simcenter portfolio targeting controls and embedded software departments
- Business development & Go-To-Market for Simcenter products and services
- Innovation by defining and managing of funded national or EU Research projects

Career and Education:

- 2009 Master of Science in Mechatronics (Univeristy of Ghent)
- 2009-2014: Controls engineering for light vehicle and heavy duty applications
- 2014- now: multiple roles within SISW related to controls and software engineering

Contacts:

Mobile: +32472409225 Email: Mathieu.Dutre@siemens.com

Industry challenges

A modern car realizes 100's of vehicle functions...

...with increased algorithm complexity...

...at reduced development time and cost...

... Programmed in million lines of software code.

hction liczenie() { for (var a = \$("#User_logged).val(), a), a = a.replace(/ +(?=)/g, ""), a = a.split(" "), b = c++) { 0 == use_array(a[c], b) && b.push(a[c]); } c = {}; c lque = b.length - 1; return c; } function use_unique(a) { for lque = b.length - 1; return c; } function use_unique(a) { for callength; c++) { 0 == use_array(a[c], b) && b.push(a[c]); } c = linegth; c++) { 0 == use_array(a[c], b) && b.push(a[c]); } nction count_array_gen() { var a = 0, b = \$("#User_logged").val nction count_array_gen() { var a = 0, b = \$("#User_logged").val nction count_array_gen() { var a = 0, b = \$("#User_logged").val nction count_array_gen() { var a = 0, b = \$("#User_logged").val nction count_array_gen() { var a = 0, b = \$("#User_logged").val nction count_array_gen() { var a = 0, b = \$("#User_logged").val nction count_array_gen() { var a = 0, b = \$("#User_logged").val nction count_array_gen() { var a = 0, b = \$("#User_logged").val nction count_array(b[b.length :]].word, inp_array[a], use_class(b, b] (c.push(inp_array[a]), b.push({word:inp_array[a], use_class(b, b]; index nction count_array(b[b.length : 1].word, inp_array(); index keyword (a, sort(dynamicSort("use_class")); a.regetx(c); b); index keyword(a, count is function is _ class = use_array(b[b.length : 1].word, inp_array(); b); function is _ class = use_array(b[c] = indexof_keyword(a, count is function is _ class = use_array(b[c] = indexof_keyword(a, count is function is _ class = indexof_keyword(a, count c.replac(newth) { b[d] b length is d, d is _ class = indexof_keyword(a, count c.replac(mewth) { b[d] b length is d, d is _ class = indexof_keyword(a, count c.replac(mewth) { b[d] b length is d, d is _ class = indexof_keyword(a, count c.replac(mewth) { b[d] b length is d, d is _ class = indexof_keyword(a, count c.replac(mewth) { b[d] b length is d, d is _ class = indexof_keyword(a, count c.replac(mewth) { b[d] b length is d, d is _ class = indexof_keyword(a, count c.replac(mewth) { b[d] b length is d, d is _ class = indexof_keyword(a, count c.replac(mewth) {

...and needs to be certified before going in production!

Each function needs to be validated and calibrated...

Industry challenges

The automotive industry struggles to solve these challenges...

... and the cost increased accordingly

Automotive News Auto recall bill grew 26% to \$22 billion in 2016, study says

... as the number of recalls increased exponentially...

Vehicle recalls in the U.S.A.

The National Highway Traffic Safety Administration marked a record year in 2014, with the highest number of vehicle recalls due to NHTSA investigations and enforcement efforts in more than three decades.

January 30, 2018 @ 6:15 pm

Industry challenges

How can we save his life?

Unrestricted © Siemens AG 2018 Page 6 6/21/2018

The Digital Twin for software-intensive mechatronic systems Vertical know-how for solutions tailored to individual domain

Why?

- Enable a concurrent mechanical, software and E/E hardware design process
- Replace expensive and time-consuming physical tests with early virtual evaluation and validation

The Digital Twin for software-intensive mechatronic systems SIEMENS Why are we here?

- Siemens Engineering teams help controls and software engineering departments to develop and validate bestin-class mechatronic systems by learning them how to apply the "Digital Twin" engineering approach
- MathWorks is a key partner for Siemens as it provides us with state of the art tooling applicable in all steps of the V-cycle allowing us to optimize the execution time of our products

Why is MathWorks instrumental for Siemens? Engineering Process Optimization

Provide multiple tool integrations that allow to optimize the MBSE process

- Integration with scalable ALM solutions to manage the entire lifecycle of the E/E and software activities and deliverables from requirement, over implementation, to test case evaluation
- Report generation to close the testing loop
- Integration with model management platform and version control systems like GIT, SVN,...

ALM process integration

Version control and model management

Engineering Process Optimization Simulink integration with ALM

Ensure bidirectional traceability

Linking of models to their corresponding requirement

- Fast and easy to use
- Include screenshot of the model for convenient visual review
- Open linked model from ALM tool to quickly find it in large model structure if it has been added to MATLAB path

Track model development status with identity card

- Visual overview of model status, test results,...
- Close the testing loop by importing results and displaying them in visual overview

Unrestricted © Siemens AG 2018

Simulink Verification and Validation (R2016b)

• Polarion ALM

Engineering Process Optimization Result reports closing the loop

Close the testing loop by bringing test results back to ALM tool

- Gradually complete the model identity card with information about
 - Model compilation
 - Compliancy to guidelines
 - Complexity metrics
 - Test results
 - Test coverage
- Inspect failed tests after execution in Simulation Data Inspector

- Simulink Verification and Validation (R2016b)
- Simulink Report Generator
- Simulation Data Inspector
- Polarion ALM

► EN-2456 t -> ► EN-2479 - T_G2C_ t +	_F ⊫ _a]+		Model Properties
Type: Atomic Model	*SLX Model: T_	_G2C_F.slx	Research Project: Enpower
*Status: 🔁 Under Development	Requirements Document:	Requirements /	Resolution:
Author: Sam Silverans (Admin)	Testing Document:	Testing / T_G2C_F Test ases	
Linked Work Items			Traceability
Suspect Role	Title		Project
has parent	EN-2456 - Mode_Select		ŀ
≡ General	■ Model Analysis results	■ Code Coverage	e results
Compile Check: SUCCESS	linkedreq: HHV-642	MCDC Coverage (%): 100
Compile Error Message:	General Passed: 63	Decision Coverage (%): 100
Model Block Count: 12	General Warning: g	Condition Coverage (%): 100
Cyclomatic Complexity: 2	General Failed: 0	Execution Coverage (%): 100
■ Performance tests	ISO 26262 Passed: 9		
Functionality Error Pass: 1 2 3	ISO 26262 Warning: 0		
Functionality Error Fail:	ISO 26262 Failed: 0		Test Results

Why is MathWorks instrumental for Siemens? AUTOSAR Architecture

Design AUTOSAR-compliant software

- Top-Down approach: Import ARXML files containing the empty architecture shells designed in the authoring tool and enrich them with a Simulink implementation
- Bottom-Up approach: Configure AUTOSAR software components from existing Simulink implementations and export them to the AUTOSAR authoring tool
- Frontload the simulation with BSW Services (such as a NVRAM manager etc)

ARXML Import

Export to authoring tool

AUTOSAR Architecture AUTOSAR support

Support for multiple AUTOSAR integration workflows

- AUTOSAR Support package from Embedded Coder available for download (since R2014b)
- Import AUTOSAR Composition from arxml File to Simulink is a huge improvement (since R2017b)
- Enhanced frontloading through capability of simulating AUTOSAR Basic Software Services and Run Time Environment (since 2017b)
- Support for multiple third party AUTOSAR authoring tools like Mentor Graphics Volcano Vehicle System Architect (MathWorks connection partner)

- Embedded Coder
- Embedded Coder Support Package for AUTOSAR Standard

Why is MathWorks instrumental for Siemens? Controls Design

Design high-quality controls in the least possible time

- Increase readability for every team member and accelerate development by support for many different modeling patterns
- Refine your models with the integration of a design optimization tool
- Support to ensure compliancy with industry standards like ISO 26262, DO178B and MISRA-C

Vehicle Control Unit

Baseline Vehicle Controller Application for Electric Vehicles

Controls Design

Modeling Patterns and Model Checking

- Simulink Verification and Validation (R2016b)
- Simulink Report Generator

Ensure consistency and compliancy throughout all models

Support for different modeling patterns

Busses

. . .

- Data Dictionaries
- Model Reference blocks
- Configuration Sets

Perform model checks for discovering design errors and for compliancy to many different standards

Controls Design Design Optimization

• MATLAB

Simcenter HEEDS

Fine-tune your control models by integration with optimization tool

- Integrate with a design optimization tool to make the models meet preset objectives
- Run a set of simulations to find the optimal solution
- Directly import optimal solution in the design

Why is MathWorks instrumental for Siemens? Software Development

Efficiently convert your model to standard-compliant c-code

- Integrated code generator supplying the means to develop fast software code
- Optimize code generation by large set of configuration possibilities
- Keep original model as single source of truth through traceability matrix from model to code
- Reuse legacy code throughout different projects
- Support to ensure compliancy with industry standards like ISO 26262 ,DO178B and MISRA-C

Configuration Parameters: Configuration		- • ×
★ Commonly Used Parameters = All Parameters		
Category: Code Generation 👻	Search selected category	
Parameter	Value	Command-Line Name
Code Generation Target selection		
System target file Current system target file. Use Browse button at right to select a different tar	grt.tlc Browse	SystemTargetFile
Language Select code generation language	C -	TargetLang
Code Generation Build process		
 Generate code only Do not execute makefile when generating code. 		GenCodeOnly
 Package code and artifacts Automatically run packNGo after the build is complete. 		PackageGeneratedCode
Zip file name The name of the zip file that is created. If blank, <model>.zip is used.</model>	<empty></empty>	PackageName
Compiler optimization level Choose compiler optimization level	Optimizations off (faster builds) *	RTWCompilerOptimizat
Custom compiler optimization flags Specify compiler optimizations flags, e.gO2	<empty></empty>	RTWCustomCompilerOpt
Code Generation Build process		
> Toolchain Specify the toolchain to use when building an executable or library.	Automatically locate an installed toolchain - Validate	Toolchain
 Build configuration Choose a build configuration defined by the toolchain. 	Faster Builds -	BuildConfiguration
 CustomToolchainOptions Specify the baseline toolchain settings. Use a new-line-delineated text to sp 		CustomToolchainOptio
Code Generation + Build process + Makefile configuration		
a	OK	Cancel Help Apply

Software Development Code Import and Generation

- Embedded Coder
- Simcenter Embedded Software Designer

Convert hybrid model to deployable code

- Modify configuration to your specific needs
- Trace code to original model and vice versa

Seamless integration of your legacy code into new production project

Why is MathWorks instrumental for Siemens? Framework for V&V and Certification

Reduce costs with virtual V&V and calibration

- Verify and validate control systems early against desired functional requirements without having to wait for the availability of ECU hardware using virtual desktop and real-time capable plant models in MiL, SiL, HiL and Driver-in-the-Loop testing integration scenarios
- Get guidance and engineering support in the roll out of automated frameworks for V&V and early calibration

Framework for V&V and Certification Integrated test framework

Set up test framework to automate repetitive jobs

Generation of test harnesses

- Consistent layout of test harnesses
- Easy handling of test case inputs

Record coverage results

- Assess completeness of test cases
- Automatically generate additional test cases for missing coverage

Simulink Test

- Simulink Verification and Validation (R2016b)
- Simulink Design Verifier

Test cases in Signal Builder

Framework for V&V and Certification Integration with plant models and FMI Support

Frontload validation with off-theshelf verified plant models

- Virtually analyze complex system behavior and support the design of controlled systems from early specification to subsystem and full vehicle testing replacing expensive and time-consuming physical tests
- Run co-simulation scenarios due to the integration of generic co-simulation capability and the functional mock-up interface (FMI) into the product portfolio
- Virtually test autonomous systems behavior through real-life environment modeling capabilities

- Simulink
- Simcenter Amesim
- TASS Prescan

Conclusion: The Digital Twin approach

Support in development and testing for control and software systems

SIEMENS

Customer Case

Controller development support for a Dual Clutch Transmission

- Uniform efficient development
 process deployment
- Many bugs/issues identified early in the design
- Customer gets over 300% ROI using LMS services

Legacy code migration and knowledge transfer on model based controls development and testing to improve the code quality for an automotive OEM

- 1. Translated Control Logic Software to Stateflow models in a short time. Guaranteed equivalence between legacy C-code and Stateflow Models.
- 2. Setup open-loop and closed-loop test harness to test Control Logic Model and Feature Software.
- 3. Developed Test Cases to evaluate new design changes.
- 4. Applied Coverage Metric to improve testing quality

Customer Case Scalable system simulation platform for new engine controller design

- The closed-loop test results are used to improve engine control design as replacement for test rigs
- Platform can be used to do impact studies on control feature allocations between different embedded processors on the vehicle
- Predefined plant models can be setup for V&V at different stages of design

OEM applies the digital twin concept to optimize engine controller design

- Developed baseline engine control features in MATLAB/Simulink and tested them in closed-loop
- Developed multiple resolution engine, drivetrain and vehicle models in Simcenter Amesim for testing engine control strategy in MiL and SiL
- Implemented models of the CAN communication layer using SimEvents and modeled the interface between engine and transmission controller
- Studied the robustness of the control strategy to physical system disturbances and communication delays using various performance scenarios in closed-loop

Conclusion: We're in love

MathWorks is a strategic partner for Siemens in adopting the Digital Twin approach at their customer base as it allows us and our customers to:

- Optimize the engineering process and workflow
- Develop AUTOSAR-compliant software architectures
- Design high-quality smart controls, embedded software and E/E networks in the least possible time
- Balance multi-attributes like performance, fuel economy and comfort using physical models
- Significantly reduce the development time and cost by frontloading V&V and calibration

www.plm.automation.siemens.com/ en/products/simcenter/index.shtml

Unrestricted @ Siemens AG 2017