

Developing Train Propulsion Controls using automatic Model Generation and automated Build and Test

Han Geerligs System Designer Vehicle Engineering Strukton Rolling Stock 19 June 2018

Strukton Rolling Stock

- Strukton Rolling Stock develops traction converters from 100 kW up to 6 MW
- Vehicle Engineering develops control software for traction converters
- The application development team consists of approximately 10 engineers
- Embedded software is developed using Model Based Design and code generation
- Using MBD since 2000, developing Embedded Targets for Analog Devices DSP

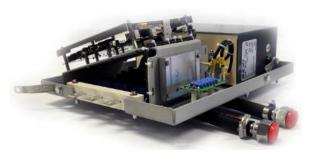
Project all over the world!

Strukton Rolling Stock

Driverless vehicle (France)

Hybrid EMU (UK)

5 MW traction (India)



Monorail (Kuala Lumpur)

Control board including DSP and FPGA

Power Module driver board

- 1. Improve development using generated network interface models
- 2. Detect errors as they are introduced by automatic unit testing
- 3. Enable concurrent engineering by automated builds

Innovation Challenges and Achievements

CHALLENGES

- Developing interfaces repetitive, error prone and shared
- Build process slow and not repeatable
- Regression

ACHIEVEMENTS

- Interface models generated automatically
- The build process is scalable
- Prompt feedback on errors

How did we get there and leverage MathWorks

- Using the Simulink API to generate interface models
- MATLAB Unit test framework
- Use MATLAB command line interface
- Benefits include:
 - Decreasing application build time (by 50%)
 - All defined by code
 - Build and test scripts start running automatically

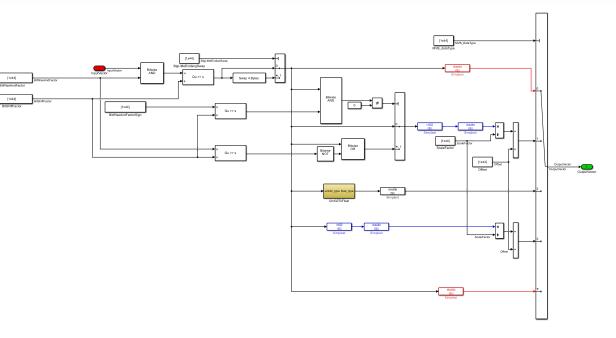
16:00:22

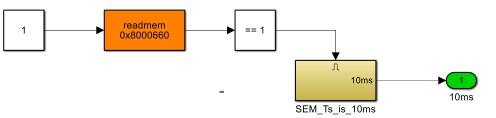
add_block('simulink/Math Operations/Gain','vdp/Five','Gain','5')

Generating interface models

- Multiple network types (e.g. CAN, MVB, Ethernet)
- Using interface definition in Excel

States for Magazine - Amelipie -					ligte wergive	wergave - Entel Mar						
Rectord	-	Sectorper.	Tenanen	Hepita Indefing	-	Gege	-	Contratere	. Seeid	Ordelitelan	Verter and a will down	
1650		1×1-21	1. 8									
1		A			0	0	÷	ę.	G	H		0
2		VCMS	CAN									
,		Signalname		Data type	Size in use (bits)	Byte	81	Byte bitse.	Min. Value	Max. Value		Description
0_spare				byte	a constant	71	- -	77.0				
11_apare 12_apare			Lacost Color	byte byte			0	79.0				
D Ctr P	orced_Bell	Torque Asle	0.10 MIL6	byte	2	- 6 4		49.0			Torque set point value in forci	ing mode for Asia 1 M
I34 Ctr_Forced_Mode_Avle_1			DOOL	1	80		80.2			Forcing mode on Axle 1 enabling		
E35 Ctr_Folced_Torque_Dir_Axte_1			book		80		80.5			Forsing direction on Axle 1 signal	Contraction of the second s	
536 Ctr_MC_Open_Request_Arte_1			book		80 80	0.4	. 80.4			Open MC Request on Axle 1		
SST Ctr_LC_Open_Request_Aute_1			bool	1	80	5	82.5			Open LC Request on Asle 1		





- Packing and unpacking
- Timing semaphores


Strukton

- Multiplexed messages
- Configurable output: ports or data stores
- Configurable naming conventions
- Configurable test points and fixations
- Optimise models to enable optimisation

IT landscape and workflows

Consultation and provide the second last protect to the set of the

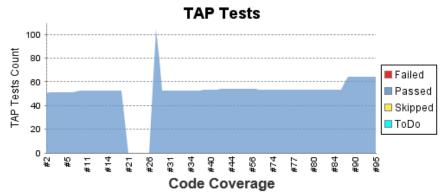
Strukton

Automate the build process

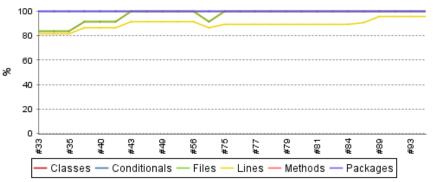
- Technology stack: Jenkins, Bitbucket, Jira and MATLAB/Simulink
- Web technology
- Build process is defined for Jenkins and MATLAB, stored in BitBucket
- Using Git and web-applications enables concurrent distributed developing

Build server

Stage View

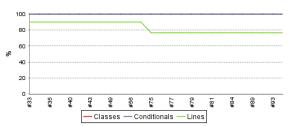


#112 #117 #121



Automate the unit tests

- Cobertura and TAP output capabilities
- Define tests in MATLAB, stored in BitBucket and run on Jenkins
- 'Codifying' enables quick recreation of test environment


Packages 100% Files 100% Classes 100% Methods 100% Lines 96% Conditionals 100%

Trend

File Coverage summary

Name	Classes	Lines	Conditionals
@Track/CompleteSegmentConstant.m	100% 1/1	77% 33/43	100% 0/0

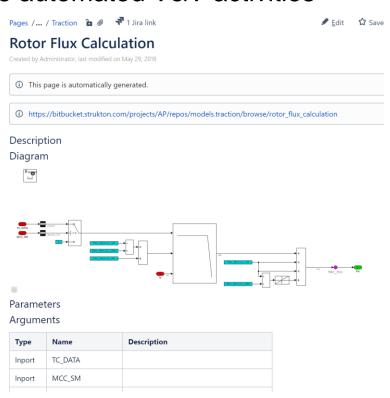
Coverage Breakdown by Class

Name	Lines	Conditionals
Track\CompleteSegmentConstant	77% 33/43	N/A

Source

@T	@Track/CompleteSegmentConstant.m						
1		<pre>function CompleteSegmentConstant(obj, segmentNumber)</pre>					
2		%COMPLETECONSTANTSEGMENT Summary of this function goes here					
3		8 Detailed explanation goes here					
4							
5	53	obj.TraceLog.startsection(['in function ' mfilename]);					
6							
7		%% Constant Force					
8	53	53 trainSpeed = min(min(obj.SegmentVmaxMatrix(segmentNumber,:)), obj.route.Segment(segmentNumber-1).SpeedResult(end));					
9	53	53 [Fturn, Fangle, FresAir, FresRol, FresTrain] = CalculateForce(obj, trainSpeed, segmentNumber);					
10	53	33 Fconstant = (FresAir + FresRol + FresTrain + Fangle + Fturn)*obj.EnableResistiveForce;					
11							
12		%% Calculate distance, speed and time					
13	53	segmentDistance = obj.route.Segment(segmentNumber).Distance					
14	53	obj.route.Segment(segmentNumber-1).DistanceResult(end);					
15							
16	53	if obj.route.Segment(segmentNumber-1).SpeedResult(end) > 0					
17	53	tSegment = (segmentDistance/(min(min(obj.SegmentVmaxMatrix(segmentNumber,:)), obj.route.Segment(segmentNumber-1).SpeedResult(end))/3.6));					
18	0	else					
19	0	<pre>tSegment = (segmentDistance/(min(obj.SegmentVmaxMatrix(segmentNumber,:))/3.6));</pre>					
20		end					
21		%% Resize if segmenttime >= 1 second					

Concluding Remarks


Our best practices, learnings and recommendations

- Consolidate knowledge, workflows and infrastructure by 'codifying'
- Use BitBucket to deploy build features automatically, e.g. display of code and data size
- Connect to standard, web-based applications
- Prefer "push" over "pull"
- Helps improving quality (non-regression)

Forward looking plans

- Generate documentation from models and publish to Confluence (already started)
- Add model coverage and guideline checking to the automated V&V activities
- Deploy applications to test setups automatically
- Explore Simulink Test and Simulink Check

