
1© 2015 The MathWorks, Inc.

Developing Algorithms for Robotics

and Autonomous Systems

Jorik Caljouw

2

Key Takeaway of this Talk

Success in developing an autonomous robotics system requires:

1. Multi-domain simulation

2. Trusted tools which make complex workflows easy and

integrate with other tools

3. Model-Based Design

3

Challenges with Autonomous Robotics Systems

Applying Multidomain Expertise

Technical Depth and System Stability

IP Protection

End-to-End workflows

Complexity of Algorithms

4

What does success look like?

5

6

7

Sense

Perceive

Plan &

Decide

Control

Platform

8

Another Example: Self-Driving Cars

Planning

Localization Obstacle

avoidance

Global Map

Following

Steering

Actuator ECUs

Accelerator

Braking

Motion Controllers

Control

LIDAR

RADAR

GPS/IMU

Camera Platform

Sense

Perceive Communication Plan

Deep

learning

9

Today: Design Pick and Place Application

Sense

Perceive

Plan &

Decide

Control

Platform

10

Demo at the Booth

11

Today: Design Pick and Place Application

Sense

Perceive

Plan &

Decide

Control

Platform

12

Platform Design
How to create a model of my system that suits my needs?

ActuatorsMechanics Environment

13

SolidWorks Model Simscape Multibody Model

Mechanics: Import models from common CAD Tools

14

Mechanics: One line import from URDF

% Import robot from URDF

smimport('j2n6s300_standalone_stl.urdf');

15

Rigid Body Tree Dynamics

▪ Specify rigid body inertial properties

▪ Compute for the rigid body tree

– Forward dynamics

– Inverse dynamics

– Mass matrix

– Velocity product

– Gravity torque

– Center of mass position and Jacobian

Compute rigid body tree dynamics

quantities

» load exampleRobots.mat

» lbr.DataFormat = 'column';

» q = lbr.randomConfiguration;

» tau = inverseDynamics(lbr, q);

16

Actuators: Model other domains

17

Environment: Connect to an external robotics simulator

18

Environment: Connect MATLAB and Simulink with ROS

MATLAB Code

SM Models

Built-in

algorithms

Robot

ROS node

Simulation

environment

Networking

Code Generation

ROS Bag import

19

Design Pick and Place Application

Sense

Perceive

Plan &

Decide

Control

Platform

20

Design Pick and Place Application

Sense

Perceive

Plan &

Decide

Control

Platform

• Support for Common Sensors

• Image analysis

• Apps

• Image enhancement

• Visualizing Point Clouds

21

Design Pick and Place Application

Sense

Perceive

Plan &

Decide

Control

Platform

22

Object Classifier and Pose Estimator

Pose
Estimator

Images Labels and Poses

Object 1 Object 2

Object 3 Object 4

23

MATLAB makes machine learning easy and accessible

Traditional Machine Learning approach

Machine

Learning

ClassificationTraditional Feature Extraction

Boy 

Dog ✓

Bicycle





Deep Learning approach

…

𝟗𝟓%
𝟑%




𝟐%

Boy 

Dog ✓

Bicycle





Convolutional Neural Network (CNN)

Learned features

End-to-end learning

Feature learning + Classification

24

Complex workflows made easy with MATLAB

obj1

obj3

obj2

obj4

Training data Preprocessing Feature Extraction Training

Classifier

% Detect regions

BW = createMask(videoFrame);

% Fill image regions

BW = imfill(BW,'holes');

% Get bounding boxes

stats = regionprops('table',BW,'BoundingBox','Area');

% Filter based on area size

targetIndex = stats.Area > 500;

% Get bounding boxes from detected regions

testFeatures(k,:) = extractHOGFeatures(Icr);

25

26

Design Pick and Place Application

Sense

Perceive

Plan &

Decide

Control

Platform

27

Planning: Find a path

[𝑥𝑏 𝑦𝑏 𝜃𝑏]

Path
Planner

Map
Initial Pose
Final Pose

Path

[𝑥𝑎 𝑦𝑎 𝜃𝑎]

28

Plan with

Stateflow Gripper

Control

Joint

Control

Inverse

Kinematics

Control

Waypoint Control

29

Design Pick and Place Application

Sense

Perceive

Plan &

Decide

Control

Platform

30

Explore Built In Functions: Inverse Kinematics

% Create ik solver object

ik = robotics.InverseKinematics('RigidBodyTree',jaco2n6s300)

% Disable random restarts

ik.SolverParameters.AllowRandomRestart = false;

% Parameters to pass to the solver

weights = [1, 1, 1, 1, 1, 1];

q_init = 0.1*ones(numel(q_home),1);

31

Demo at the Booth

32

Key Takeaway of this Talk

Success in developing an autonomous robotics system requires:

1. Multi-domain simulation

2. Trusted tools which make complex workflows easy and

integrate with other tools

3. Model-Based Design

33

German Aerospace Center (DLR) Robotics and

Mechatronics Center Develops Autonomous

Humanoid Robot with Model-Based Design

Challenge

Develop control systems for a two-armed mobile

humanoid robot with 53 degrees of freedom

Solution

Use Model-Based Design with MATLAB and Simulink

to model the controllers and plant, generate code for

HIL testing and real-time operation, optimize

trajectories, and automate sensor calibration

Results

▪ Programming defects eliminated

▪ Complex functionality implemented in hours

▪ Advanced control development by students

enabled

“Model-Based Design and automatic code generation enable us

to cope with the complexity of Agile Justin’s 53 degrees of

freedom. Without Model-Based Design it would have been

impossible to build the controllers for such a complex robotic

system with hard real-time performance.”

- Berthold Bäuml, DLR

Link to user story

DLR’s humanoid robot Agile Justin

autonomously performing a

complex construction task.

http://www.mathworks.com/company/user_stories/dlr-develops-autonomous-humanoid-robot-with-model-based-design.html?by=company

34

Clearpath Robotics Accelerates Algorithm Development

for Industrial Robots

Challenge

Shorten development times for laser-based

perception, computer vision, fleet management, and

control algorithms used in industrial robots

Solution
Use MATLAB to analyze and visualize ROS data,

prototype algorithms, and apply the latest advances

in robotics research

Results

▪ Data analysis time cut by up to 50%

▪ Customer communication improved

▪ Cutting-edge SDV algorithms quickly

incorporated

“ROS is good for robotics research and development, but not for

data analysis. MATLAB, on the other hand, is not only a data

analysis tool, it’s a data visualization and hardware interface tool

as well, so it’s an excellent complement to ROS in many ways.”

- Ilia Baranov, Clearpath Robotics

Link to user story

An OTTO self-driving vehicle from Clearpath Robotics.

https://www.mathworks.com/company/user_stories/clearpath-robotics-accelerates-algorithm-development-for-industrial-robots.html

35

Voyage develops longitudinal controls

for self-driving taxis

Challenge

Develop a controller for a self-driving car to follow a target

velocity and maintain a safe distance from obstacles

Solution

Use Simulink to design a longitudinal model predictive

controller and tuned parameters based on experimental data

imported into MATLAB using Robotics System Toolbox.

Deploy the controller as a ROS node using Robotics System

Toolbox. Generate source code using MATLAB Coder into a

Docker Container.

Results

▪ Development speed tripled

▪ Easy integration with open-source software

▪ Simulink algorithms delivered as production software

“We were searching for a prototyping solution that was

fast for development and robust for production. We

decided to go with Simulink for controller development

and code generation, while using MATLAB to automate

development tasks.”

- Alan Mond, Voyage

Voyage’s self driving car in San Jose, California.

Link to technical article

https://www.mathworks.com/company/newsletters/articles/developing-longitudinal-controls-for-a-self-driving-taxi.html

36

Preceyes Accelerates Development of World’s First

Eye-Surgery Robot Using Model-Based Design

Challenge

Develop a real-time control system for robot-assisted

surgical procedures performed within the human eye

Solution

Use Model-Based Design with MATLAB and

Simulink to model and simulate the control system

and use Simulink Coder and Simulink Real-Time to

deploy it to a real-time target

Results

▪ Development Core controller developed by one

engineer

▪ Patient safety assured

▪ Road map to industrialization set

“MATLAB and Simulink provided a single platform that supported

our complete workflow and all the components and protocols we

needed for our robotic system. That enabled us to quickly

develop a safe, real-time device, ready for clinical investigation.”

- Maarten Beelen, Preceyes

The PRECEYES Surgical System. Image copyright

and courtesy Preceyes.

Link to user story

https://www.mathworks.com/company/user_stories/preceyes-accelerates-development-of-worlds-first-eye-surgery-robot-using-model-based-design.html

