MATLAB EXPO 2017

Verification Techniques for Model
and Code

Paul Lambrechts

4\ MathWorks

Key Takeaway

A good design workflow leads to a good design,
but verification proves It!

Requirements System
Integration
System HW/SW
Design Integration
Software Software
Design Integration

Coding

MATLAB EXPO 2017 2

LEAR CORPORATION
The 100-day design cycle with MATLAB and Simulink

4\ MathWorks:

Model-Based Design and a Testing and Proving Workflow

"‘ -~~\ ~ ,”’f_-N ~
', \\ ',‘~) \\ ’ V4 ,—~:\ \\
| 2 \ . * ¥ ¥Y OO k
Textual » Executable “11 » “ﬂggﬂ#;ﬁ%;ﬂe Generated Object
Requirements Specification P generation C/C++ code code

Code
Generation

Compilation
and Linking

Modelling

MATLAB EXPO 2017 4

4\ MathWorks

Start with Requirements

Requirements for system
or software component

Textual
Requirements

MATLAB EXPO 2017 5

4\ MathWorks

Transform Requirements into Executable Specifications

« Simulink models for continuous or discrete time behavior
- Signal processing filters
- Control algorithms
« Stateflow for logic and discrete events control
- Start-up behavior, health checking
- Supervisory control

Requirements Traceability

L |
- -~

-

'4 \

Textual » Executable
Requirements Specification

Modelling

MATLAB EXPO 2017 6

4\ MathWorks:

Bi-directionally Trace Requirements

Textual Requirements Design Model in Simulink

LDWS_Requirements.docx - Word Jay Abraham @& — O
Insert Design Layout References Mailings Review View 2 Tell me 2_ Share EOF
Repository Pts —
L} Repository
- 2. Identify lane markers {yellow/white lines, solid vs. broken lines) Line Line

_ <— % Message —

Count

; En Enable
: —— Count
——P Dis —

L Lane Tracking
: Right_3rdLane [R3rd]
: 3. Determine when car is in-between lane
: Show3rdLane —
- Left_3rdLane [L3rd] —»| ILow
: Lane Detection ColorAndTypeldx [—
: — | YCbCrLow
: 4. Warn when there is Right Lane or Left Lane departure [Reﬂmg] Twol anesFlag —
: €< Departure Warning

MATLAB EXPO 2017 7

4\ MathWorks

Test Early in Simulation

 Predict dynamic system behavior by simulation
- System & environment models
- Precision with floating point

« Use of simulation results for system design

Component and system - Fast What-/If studies

testing - Short iteration cycles
”———_——- L ---~ -
,II’ ~~\\
7 \

Model used for

Textual » Executable | g oy » production code

Requirements Specification :
generation

Modelling

MATLAB EXPO 2017 8

4\ MathWorks
Functional Testing

= Author test-cases that are derived from requirements
— Use test harness to isolate component under test

— Test Sequence to create complex test scenarios

. Manage tests, execution, results | (I | EECTEES | SIS

— Re-use tests for regression

I i . TestHarness .
— Automate In Continuous Integration TEET — gl — i
systems such as Jenkins o l ==

nnnnn

== T

LR LR B T AL

= SR e
P

.......

Simulink Test \M__ _f/I k“a_ _f/I k“a_ _f/I

MATLAB EXPO 2017 9

4\ MathWorks

Formal Verification: Proving Requirements

LP gear [’
speed v

Safety Properties

Simulink Design Verifier

Checks that design meets requirements
« Condition 1: Gear 2 always engages
« Condition 2: Gear 2 never engages

MATLAB EXPO 2017 10

&\ MathWorks:

Formal Verification: Test Case Generation

Automatically generate test cases for:
* Functional Requirements Testing
 Model Coverage Analysis

Test Objective
2
{0,1) = 2 '\ True /
— in R out —(1)
O { debounced
1 =
T debounce .
TeSt Condltlon Masked Objective

*The Test Objective block defines the values of a signal that a test case must satisfy.
*The Test Condition block constrains the values of a signal during analysis.

Simulink Design Verifier
MATLAB EXPO 2017 11

https://nl.mathworks.com/help/sldv/ref/testobjective.html
https://nl.mathworks.com/help/sldv/ref/testcondition.html

Formal Verification: Proving Robustness

‘ Overflow VALID

N

In1

@iﬂt&

P

Overflow ERROR - View test case

Derived Ranges: Derived
Outport [-128..127]

Outport 1/[-128..127]

nges:

intg

S TN

int8
ful
Abs

In2

threshold

<= | boolean C
| Relational Out1
ouble Qperator

Constant

Detect overflows, divide by zero, and other robustness errors
* Proven that overflow does NOT occur
* Proven that overflow DOES occur

Simulink Design Verifier

MATLAB EXPO 2017

4\ MathWorks'

12

Coverage Analysis

Model Coverage

* Measure how much has been tested
- Find untested design elements

- Find dead logic and unreachable states

* |[dentify requirement issues early
- Missing functional requirements

I

- Inconsistent functional requirements

Code Coverage

T)

1 g
3 N

|
b N

Other code

Model used for
production code
generation

Generated
C/C++ code

Code
Generation

MATLAB EXPO 2017

4\ MathWorks

13

Coverage Analysis: also for self-written C/C++ in S-functions

S-Function block "sldemo sfun counterbus"

Parent: sldemo lct bus/TestCounter

Uncovered Links:

Metric

Cvclomatic Complexity
Condition

Decision

MCDC

Detailed Report:

.

Coverage

3

67% (4/6) condition outcomes
75% (3/4) decision outcomes

50% (1/2) conditions reversed the outcome

sldemo Ict bus sldemo sfun counterbus mstance 1 cov.himl

Simulink Verification and Validation

4\ MathWorks

File Contents Complexity

1 . counterbus.c 3

I~

. counterbusFeon 3

g

Decision
75040

TE0
750G —

Condition
6700

H7% o

MCDC Stmt
S0%40 0000 m—
30% - C0%q —

MATLAB EXPO 2017

14

4\ MathWorks

Static Code Analysis

« Code metrics and standards
- Comment density, cyclomatic complexity,...
- MISRA and security standards compliance
- Custom check authoring
* Bug Finding
- Data and control flow
- CERT C check for security vulnerabilities
« Code Proving
- Formal Methods / Abstract Interpretation
- No false negatives

e

L
'X Other code
Model used for Generated
production code
_ C/C++ code
generation

Code
Generation

MATLAB EXPO 2017 15

Static Code Analysis: Proving vs. Bug Finding

Green implies absence of the most
important classes of run-time errors:

/

Formally Proven

Polyspace Code Prover

Green: reliable
safe pointer access

Red: faulty

out of bounds error \

Gray: dead

unreachable code \

Urange: unproven
may be unsafe for some

conditions

Purple: violation
MISRA-C/C++ or JSF++
code rules -------—-mmmm=mmmmmmm

Range data

x\\\\E?r (E = 0; E < 100; i++) {
* = 0; Ik.

if (get bus status() > 0) {
if (get o0il pressure() > 0) {
*p o= 5

\ else {
i++;

tool tip

static void pointer arithmetic (void) {
int array[100];
int *p = array;

int 1i;

S
AV . .
prrs; variable ‘I’ (int32): [0 .. 99]
} assignment of ‘I’ (int32): [1 .. 100]

}
}

i = get bus status();

if (i >= 0) {

MATLAB EXPO 2017

4\ MathWorks'

16

Equivalence Testing (Back to Back Testing)

Equivalence Testing

PIL —

SIL — Software in the Loop
(prevention of unintended
functionality)

Processor in the Loop
(back to back testing)

V///”_ N“\\ \\\\
|4 \ '
Model used for Generated Object

production code
generation

C/C++ code

Generation

Compilation
and Linking

MATLAB EXPO 2017

&\ MathWorks:

17

4\ MathWorks:

Software In the Loop (SIL) Testing

Show equivalence, model to code
Assess code execution time

((= Collect code coverage
LJ Test

Vectors

Embedded PC
Coder _4 Generated @~ Compiler
Code

Desktop Simulation Object Code N
(on PC) Execution (on PC)

4 l I

l Compare (
m Results i Results

MATLAB EXPO 2017 18

Model 4 Object File

4\ MathWorks

Processor In the Loop (PIL) Testing

W Test
Vectors

Embedded Cross

Coder Generated :
Model —_ | Compiler
Code

Desktop Simulation Object Code N
(on PC) Execution (on target) Attt

| = -
Compare reeee
m Results @ M/ Results

MATLAB EXPO 2017 19

Verify numerical equivalence
Assess target execution time
Collect on target code coverage

4 Object File

4\ MathWorks'

Model-Based Design Reference Workflow (IEC 61508-3)

- -~ ~ - -——
-~ RN TSNS 7T DS e
| 4 \ v\ ¥V ¥ i VY \
|

Model used for

3\
: Generated Object
mil » UECILELEN Core I» C/C++ code » code

generation

Textual » Executable
Specification

Requirements

Code
Generation

Compilation

Modelling and Linking

Rail Industrial

Automotive Medical Aerospace

(1ISO 26262) (IEC 62304) (DO-178) (IEC 61508)

(EN 50128)

MATLAB EXPO 2017 20

4\ MathWorks'
Training

Verification and Validation of Simulink Models
Testing Generated Code in Simulink
Polyspace for C/C++ Code Verification
Polyspace Bug Finder for C/C++ Code Analysis

On-Site

NS
N~

MATLAB EXPO 2017 21

4\ MathWorks

Key Takeaway

A good design workflow leads to a good design,
but verification proves It!

Requirements System
Integration
System HW/SW
Design Integration
Software Software
Design Integration

Coding

MATLAB EXPO 2017 22

