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Key Takeaway

A good design workflow leads to a good design,
but verification proves It!
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LEAR CORPORATION
The 100-day design cycle with MATLAB and Simulink
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Model-Based Design and a Testing and Proving Workflow
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Start with Requirements

Requirements for system
or software component

Textual
Requirements
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Transform Requirements into Executable Specifications

« Simulink models for continuous or discrete time behavior
- Signal processing filters
- Control algorithms
« Stateflow for logic and discrete events control
- Start-up behavior, health checking
- Supervisory control

Requirements Traceability

L |
- -~

-

'4 \

Textual » Executable
Requirements Specification

Modelling

MATLAB EXPO 2017 6



4\ MathWorks:

Bi-directionally Trace Requirements

Textual Requirements Design Model in Simulink
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Test Early in Simulation

 Predict dynamic system behavior by simulation
- System & environment models
- Precision with floating point

« Use of simulation results for system design

Component and system - Fast What-/If studies

testing - Short iteration cycles
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Functional Testing

= Author test-cases that are derived from requirements
— Use test harness to isolate component under test

— Test Sequence to create complex test scenarios

. Manage tests, execution, results | (I | EECTEES | SIS

— Re-use tests for regression
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Formal Verification: Proving Requirements

LP gear [’
speed v

Safety Properties

Simulink Design Verifier

Checks that design meets requirements
« Condition 1: Gear 2 always engages
« Condition 2: Gear 2 never engages
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Formal Verification: Test Case Generation

Automatically generate test cases for:
* Functional Requirements Testing
 Model Coverage Analysis

Test Objective
2
{0,1) = 2 '\ True /
— in R out —(1)
O { debounced
1 =
T debounce .
TeSt Condltlon Masked Objective

*The Test Objective block defines the values of a signal that a test case must satisfy.
*The Test Condition block constrains the values of a signal during analysis.

Simulink Design Verifier
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https://nl.mathworks.com/help/sldv/ref/testobjective.html
https://nl.mathworks.com/help/sldv/ref/testcondition.html

Formal Verification: Proving Robustness

‘ Overflow VALID
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Detect overflows, divide by zero, and other robustness errors
* Proven that overflow does NOT occur
* Proven that overflow DOES occur

Simulink Design Verifier
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Coverage Analysis

Model Coverage

* Measure how much has been tested
- Find untested design elements

- Find dead logic and unreachable states

* |[dentify requirement issues early
- Missing functional requirements

I

- Inconsistent functional requirements

Code Coverage
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Coverage Analysis: also for self-written C/C++ in S-functions

S-Function block "sldemo sfun counterbus"

Parent: sldemo lct bus/TestCounter

Uncovered Links:

Metric

Cvclomatic Complexity
Condition

Decision

MCDC

Detailed Report:

.

Coverage

3

67% (4/6) condition outcomes
75% (3/4) decision outcomes

50% (1/2) conditions reversed the outcome

sldemo Ict bus sldemo sfun counterbus mstance 1 cov.himl

Simulink Verification and Validation
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File Contents  Complexity
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Static Code Analysis

« Code metrics and standards
- Comment density, cyclomatic complexity,...
- MISRA and security standards compliance
- Custom check authoring
* Bug Finding
- Data and control flow
- CERT C check for security vulnerabilities
« Code Proving
- Formal Methods / Abstract Interpretation
- No false negatives
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Static Code Analysis: Proving vs. Bug Finding

Green implies absence of the most
important classes of run-time errors:

/

Formally Proven

Polyspace Code Prover

Green: reliable
safe pointer access

Red: faulty

out of bounds error \

Gray: dead

unreachable code \

Urange: unproven
may be unsafe for some

conditions

Purple: violation
MISRA-C/C++ or JSF++
code rules -------—-mmmm=mmmmmmm

Range data

x\\\\E?r (E = 0; E < 100; i++) {
* = 0; Ik.

if (get bus status() > 0) {
if (get o0il pressure() > 0) {
*p o= 5

\ else {
i++;

____________________

tool tip

static void pointer arithmetic (void) {
int array[100];
int *p = array;

int 1i;

S
AV . .
prrs; variable ‘I’ (int32): [0 .. 99]
} assignment of ‘I’ (int32): [1 .. 100]

}
}

i = get bus status();

if (i >= 0) {

MATLAB EXPO 2017
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Equivalence Testing (Back to Back Testing)

Equivalence Testing

PIL —

SIL — Software in the Loop
(prevention of unintended
functionality)

Processor in the Loop
(back to back testing)

V///”_ N“\\ \\\\
|4 \ '
Model used for Generated Object
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Software In the Loop (SIL) Testing

Show equivalence, model to code
Assess code execution time

( ( = Collect code coverage
LJ Test

Vectors

Embedded PC
Coder _4 Generated @~ Compiler
Code

Desktop Simulation Object Code N
(on PC) Execution (on PC)

4 l I

l Compare (
m Results i Results
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Processor In the Loop (PIL) Testing

W Test
Vectors

Embedded Cross

Coder Generated :
Model —_ | Compiler
Code

Desktop Simulation Object Code N
(on PC) Execution (on target) Attt

| = -
Compare reeee
m Results @ M/ Results
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Assess target execution time
Collect on target code coverage
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Model-Based Design Reference Workflow (IEC 61508-3)
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Model used for

3\
: Generated Object
mil » UECILELEN Core I» C/C++ code » code

generation

Textual » Executable
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Code
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Rail Industrial

Automotive Medical Aerospace

(1ISO 26262) (IEC 62304) (DO-178) (IEC 61508)

(EN 50128)
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Training

Verification and Validation of Simulink Models
Testing Generated Code in Simulink
Polyspace for C/C++ Code Verification
Polyspace Bug Finder for C/C++ Code Analysis

On-Site

NS
N~
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Key Takeaway

A good design workflow leads to a good design,
but verification proves It!
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