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Key Takeaway

A good design workflow leads to a good design, 

but verification proves it!
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Model-Based Design and a Testing and Proving Workflow
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Start with Requirements

Textual

Requirements

Executable

Specification

Model used for 

production code 

generation

Generated 

C/C++ code

Object 

code

Modelling
Compilation 

and Linking

Code 

Generation

Requirements for system

or software component



6

Transform Requirements into Executable Specifications
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• Simulink models for continuous or discrete time behavior

- Signal processing filters

- Control algorithms

• Stateflow for logic and discrete events control

- Start-up behavior, health checking
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Bi-directionally Trace Requirements

Textual Requirements Design Model in Simulink
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Model used for 

production code 

generation

Test Early in Simulation
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• Predict dynamic system behavior by simulation

- System & environment models

- Precision with floating point

• Use of simulation results for system design  

- Fast What-/If studies

- Short iteration cycles
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Functional Testing

 Author test-cases that are derived from requirements

– Use test harness to isolate component under test

– Test Sequence to create complex test scenarios

 Manage tests, execution, results

– Re-use tests for regression

– Automate in Continuous Integration

systems such as Jenkins

Simulink Test
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Formal Verification: Proving Requirements

Checks that design meets requirements

• Condition 1: Gear 2 always engages

• Condition 2: Gear 2 never engages

Simulink Design Verifier
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Formal Verification: Test Case Generation

Test Condition

Test Objective

•The Test Objective block defines the values of a signal that a test case must satisfy. 

•The Test Condition block constrains the values of a signal during analysis.

Simulink Design Verifier

Automatically generate test cases for:

• Functional Requirements Testing

• Model Coverage Analysis

https://nl.mathworks.com/help/sldv/ref/testobjective.html
https://nl.mathworks.com/help/sldv/ref/testcondition.html


12

Formal Verification: Proving Robustness

Detect overflows, divide by zero, and other robustness errors

• Proven that overflow does NOT occur

• Proven that overflow DOES occur

Simulink Design Verifier
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Coverage Analysis
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• Measure how much has been tested

- Find untested design elements

- Find dead logic and unreachable states

• Identify requirement issues early

- Missing functional requirements

- Inconsistent functional requirements
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Coverage Analysis: also for self-written C/C++ in S-functions

Simulink Verification and Validation
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Static Code Analysis
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• Code metrics and standards

- Comment density, cyclomatic complexity,…

- MISRA and security standards compliance

- Custom check authoring

• Bug Finding

- Data and control flow

- CERT C check for security vulnerabilities 

• Code Proving

- Formal Methods / Abstract Interpretation

- No false negatives
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Static Code Analysis: Proving vs. Bug Finding

Polyspace Code Prover

Green implies absence of the most 

important classes of run-time errors:

Formally Proven
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Equivalence Testing (Back to Back Testing)

Equivalence Testing
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Software In the Loop (SIL) Testing
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Processor In the Loop (PIL) Testing
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Model-Based Design Reference Workflow (IEC 61508-3)
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Training

Public

On-Site

Verification and Validation of Simulink Models 

Testing Generated Code in Simulink

Polyspace for C/C++ Code Verification

Polyspace Bug Finder for C/C++ Code Analysis 
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Key Takeaway

A good design workflow leads to a good design, 

but verification proves it!
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