
1© 2015 The MathWorks, Inc.

Verification Techniques for Model

and Code

Paul Lambrechts

2

Key Takeaway

A good design workflow leads to a good design,

but verification proves it!

Requirements

System

Design

Software

Design

Coding

Software

Integration

HW/SW

Integration

System

Integration

3

4

Model-Based Design and a Testing and Proving Workflow

Textual

Requirements

Executable

Specification

Object

code

Generated

C/C++ code

Model used for

production code

generation

Design

Verification & Validation

Modelling
Compilation

and Linking

Code

Generation

5

Start with Requirements

Textual

Requirements

Executable

Specification

Model used for

production code

generation

Generated

C/C++ code

Object

code

Modelling
Compilation

and Linking

Code

Generation

Requirements for system

or software component

6

Transform Requirements into Executable Specifications

Textual

Requirements

Executable

Specification

Modelling

• Simulink models for continuous or discrete time behavior

- Signal processing filters

- Control algorithms

• Stateflow for logic and discrete events control

- Start-up behavior, health checking

- Supervisory control

Model used for

production code

generation

Generated

C/C++ code

Object

code

Compilation

and Linking

Code

Generation

Requirements Traceability

7

Bi-directionally Trace Requirements

Textual Requirements Design Model in Simulink

8

Model used for

production code

generation

Test Early in Simulation

Textual

Requirements

Executable

Specification

Modelling

• Predict dynamic system behavior by simulation

- System & environment models

- Precision with floating point

• Use of simulation results for system design

- Fast What-/If studies

- Short iteration cycles

Generated

C/C++ code

Object

code

Compilation

and Linking

Code

Generation

Component and system

testing

9

Functional Testing

 Author test-cases that are derived from requirements

– Use test harness to isolate component under test

– Test Sequence to create complex test scenarios

 Manage tests, execution, results

– Re-use tests for regression

– Automate in Continuous Integration

systems such as Jenkins

Simulink Test

10

Formal Verification: Proving Requirements

Checks that design meets requirements

• Condition 1: Gear 2 always engages

• Condition 2: Gear 2 never engages

Simulink Design Verifier

11

Formal Verification: Test Case Generation

Test Condition

Test Objective

•The Test Objective block defines the values of a signal that a test case must satisfy.

•The Test Condition block constrains the values of a signal during analysis.

Simulink Design Verifier

Automatically generate test cases for:

• Functional Requirements Testing

• Model Coverage Analysis

https://nl.mathworks.com/help/sldv/ref/testobjective.html
https://nl.mathworks.com/help/sldv/ref/testcondition.html

12

Formal Verification: Proving Robustness

Detect overflows, divide by zero, and other robustness errors

• Proven that overflow does NOT occur

• Proven that overflow DOES occur

Simulink Design Verifier

13

Coverage Analysis

Model used for

production code

generation

Object

code

Compilation

and Linking

Model Coverage

• Measure how much has been tested

- Find untested design elements

- Find dead logic and unreachable states

• Identify requirement issues early

- Missing functional requirements

- Inconsistent functional requirements

Textual

Requirements

Executable

Specification

Modelling

Generated

C/C++ code

Code

Generation

Other code

Code Coverage

14

Coverage Analysis: also for self-written C/C++ in S-functions

Simulink Verification and Validation

15

Static Code Analysis

Model used for

production code

generation

Object

code

Compilation

and Linking

Textual

Requirements

Executable

Specification

Modelling

Generated

C/C++ code

Code

Generation

Other code

• Code metrics and standards

- Comment density, cyclomatic complexity,…

- MISRA and security standards compliance

- Custom check authoring

• Bug Finding

- Data and control flow

- CERT C check for security vulnerabilities

• Code Proving

- Formal Methods / Abstract Interpretation

- No false negatives

16

Static Code Analysis: Proving vs. Bug Finding

Polyspace Code Prover

Green implies absence of the most

important classes of run-time errors:

Formally Proven

17

Equivalence Testing (Back to Back Testing)

Equivalence Testing

Model used for

production code

generation

Generated

C/C++ code

Object

code

Modelling
Compilation

and Linking

Code

Generation

SIL – Software in the Loop

(prevention of unintended

functionality)

PIL – Processor in the Loop

(back to back testing)

Executable

Specification

Modelling

Textual

Requirements

18

Software In the Loop (SIL) Testing

Test
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code
Execution (on PC)

Results

Generated
Code

Object File

Embedded
Coder

PC
Compiler

== ?

Compare

 Show equivalence, model to code

 Assess code execution time

 Collect code coverage

19

Processor In the Loop (PIL) Testing

Test
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code
Execution (on target)

Results

Generated
Code

Object File

Embedded
Coder

Cross
Compiler

== ?

Compare

 Verify numerical equivalence

 Assess target execution time

 Collect on target code coverage

20

Model-Based Design Reference Workflow (IEC 61508-3)

Textual

Requirements

Executable

Specification

Object

code

Generated

C/C++ code

Model used for

production code

generation

Modelling
Compilation

and Linking

Code

Generation

Automotive
(ISO 26262)

Aerospace
(DO-178)

Rail

(EN 50128)

Medical
(IEC 62304)

Industrial
(IEC 61508)

21

Training

Public

On-Site

Verification and Validation of Simulink Models

Testing Generated Code in Simulink

Polyspace for C/C++ Code Verification

Polyspace Bug Finder for C/C++ Code Analysis

22

Key Takeaway

A good design workflow leads to a good design,

but verification proves it!

Requirements

System

Design

Software

Design

Coding

Software

Integration

HW/SW

Integration

System

Integration

