
0

임형득 이사, 매스웍스코리아

MATLAB 프로그래밍

아키텍처 디자인

11

Agenda
MATLAB Programming Architecture Design

▪ Software Architecture Design

▪ Project Folder Design

▪ Class(Object Oriented Programming)

▪ App Architecture

▪ MATLAB Unit Test

22

Software Architecture Design

33

Software Architecture Design

DISARRAY

▪ The Importance of Architecture Design

– System Understanding

– Scalability and Flexibility

– Risk Mitigation

– Modularity and Reusability

– Collaboration and Communication

– Quality Assurance

– Cost and Time Efficiency

ORGANIZATION

44

Agenda
MATLAB Programming Architecture Design

▪ Architecture Design

▪ Project Folder Design

▪ Class(Object Oriented Programming)

▪ App Architecture

▪ MATLAB Unit Test

55

Project Folder Design

▪ Folder Structure Design

– Project Name

– Source Code

– Models

– Data

– Test

– Document

https://vitalflux.com/data-science-project-folder-structure/

https://vitalflux.com/data-science-project-folder-structure/

66

▪ MATLAB Project

– Automate Tasks

▪ Path setup and startup/shutdown

▪ Shortcut

– Collecting Metadata

▪ Labels, Grouping(Classification)

– Source Control(Management)

▪ Gitlab or SVN

▪ Check in/ Check out

▪ Track and Compare revisions

▪ Analyze dependencies

– Sharing Code

▪ Package and share projects

Project Folder Design

77

Project Folder Design

▪ Packages Namespaces(+folders)

– Code Organization

– Encapsulation and Modularity

– Code Discoverability

– Avoiding Naming Conflicts

– Names must be unique

– Contains class folders,

 function, and other packages

– Top-level package folder must be

 on the MATLAB path

88

Project Folder Design

▪ Class (@folders)

– Code organization

– Encapsulation Modularity

– Code sharing and collaboration

– Avoiding Naming Conflicts

– Encourages best practices

– Contains class folders,

 function, and other packages.

– Top-level package folder must be

 on the MATLAB path.

99

Agenda
MATLAB Programming Architecture Design

▪ Architecture Design

▪ Project Folder Design

▪ Class(Object Oriented Programming)

▪ App Architecture

▪ MATLAB Unit Test

1010

Class(Object Oriented Programming)

Data

Value Variable Container
(e.g., struct, table)

(Properties)

Class

Algorithm

Command
Line

Script Function (Methods)

Increasing level of sophistication

1111

Class(Object Oriented Programming)

▪ Class

– A blueprint for creating objects; a concept

– Properties (data, state)

– Methods (algorithms, behavior)

▪ Object

– A specific instance of a class

Class: Dog

1212

Class(Object Oriented Programming)

▪ Inheritance Inheritance (“is a”)

1313

Class(Object Oriented Programming)

Class / Package Names

Properties (fields)

Methods (functions)

Class Diagrams: Class Block

1414

▪ Handle Class

– Instance variables refer to objects

– A copy of an instance variable refers to the same object as the original variable

– Good for representing physical entities (people, places, things)

▪ Value Class

- The data of an instance is independent of the data in the copy of that instance

- Good for representing mathematical abstractions such as double arrays or symbolic

arrays

Class(Object Oriented Programming)

classdef MyHandleClass < handle

 ...

end

1515

▪ OOP Design Patterns

– A known good solution to a standard problem

– Allows reuse

– Easy for reference

▪ Adapter

– Integrate objects that have different interfaces

▪ Singleton

– Global object

▪ Factory

– create complex objects more easily

Class(Object Oriented Programming)

1616

If “classdef DataSet”

Set1 = DataSet(5,6);

Set2 = Set1;

Set3 = DataSet(7,8);

DataSet Object1DataSet Set1

DataSet Set2 DataSet Object2

DataSet Object3DataSet Set3

If “classdef DataSet” < handle

Set1 = DataSet(5,6);

Set2 = Set1;

Set3 = DataSet(7,8);

DataSet Object1

DataSet Set1

DataSet Set2

DataSet Object2DataSet Set3

Class(Object Oriented Programming)

1717

Class(Object Oriented Programming)

Aggregation (“has”)

Composition

(“exclusively has”)

1818

▪ OOP Design Patterns

– A known good solution to a standard problem

– Allows reuse

– Easy for reference

▪ Adapter

– Integrate objects that have different interfaces

▪ Singleton

– Global object

▪ Factory

– create complex objects more easily

Class(Object Oriented Programming)

1919

▪ MATLAB’s Class Diagram Viewer

Class(Object Oriented Programming)

2020

Agenda
MATLAB Programming Architecture Design

▪ Architecture Design

▪ Project Folder Design

▪ Class(Object Oriented Programming)

▪ App Architecture

▪ MATLAB Unit Test

2121

App Architecture

2222

App Architecture

▪ Enhanced design environment

– Component alignment guides

– Simpler property inspectors

– Intuitive menu bar interface

▪ Expanded UI component set

– Gauges, dials, tabs, date picker, and more…

▪ Improved code and coding tools

– Object-based code format

– Property and method management

– Code refactoring

▪ Run App Designer apps in a web browser

– Run apps in MATLAB Online

– Package apps using MATLAB Compiler and

host them using MATLAB Web App Server The App Designer

2323

App Architecture
Components

UI Components

2424

▪ Design and layout the app’s

interface

▪ Component Library

– Select components and

 add them to the canvas

▪ Design Canvas

– Layout components

▪ Toolstrip

– Align, space, and

 group components

▪ Properties panel

– Set common component properties

App Architecture
Design View

2525

▪ Write code to control the

app's behavior

▪ Editor

– Write code for callbacks

 and other functions

▪ Code Browser

– Navigate to callbacks

and app properties

▪ Toolstrip

– Add new code elements

properties, callbacks, and

functions

App Architecture
Code View

2626

App Architecture

▪ App Architectures

– Maintenance / Traceability / Readability

• Back-end Architectures : Algorithms, Methods(Functions), Properties(Data)

• Front-end Architectures : GUI(App Designer)

– Stability / Robust

• Unit Test : Script ,Function ,Class , App Unit Test

– Reusability

• Class, OOP(Object-Oriented-Programing)

• OOP Pattern Design

Front-end

(App Designer)

Application Development

Back-end Code

(MATLAB)

Algorithm Development

2727

App Architecture

App Architecture

Back-end

Package & Class Front-end

Package & Class

2828

▪ Pulse Generator App
https://www.mathworks.com/help/matlab/creating_guis/app-or-gui-with-instrument-controls.html

Pulse Generator App

App Architecture

PulseGenerator.mlapp

https://www.mathworks.com/help/matlab/creating_guis/app-or-gui-with-instrument-controls.html

2929

▪ Back-end / Front-end Architectures

PulseGenerator.mlapp

Front-end App Class

Back-end Package

App Architecture

3030

▪ MATLAB Project

– source control(management) for Gitlab or SVN

– Project path setup and startup/shutdown

– Shortcut

▪ Back-end /Front-end Architecture

– Back-end

– Front-end

▪ Tests

– Unit test(Back-end / Front-end/ System test)

– “data” folder : expected data file(*.mat)

– Artifacts

▪ Docs

▪ Release

App Architecture

3131

App Architecture
App Deployment

app.exe

https:\\www.app.com

3232

Agenda
MATLAB Programming Architecture Design

▪ Architecture Design

▪ Project Folder Design

▪ Class(Object Oriented Programming)

▪ App Architecture

▪ MATLAB Unit Test

3333

Testable Code?

Run

Running Tests
Debugging Code Coverage

3434

Manual

System

Integration

Unit
component, function

multiple components

end-to-end

complexity/timeMATLAB Unit Test

Unit Testing Pyramid

3535

2 unit tests, 0 system tests…

MATLAB Unit Test

3636

▪ MATLAB Unit Testing Framework

– Script-based Unit Tests

– Function-Based Unit Tests

– Class-Based Unit Tests

– App-Based Unit Tests

– Use the TestCase class template

to create tests more quickly
and accurately

– Works with continuous
integration servers

– Code coverage metrics (statement
and function coverage)

 and report format

MATLAB Unit Test

https://www.mathworks.com/help/matlab/matlab-unit-test-framework.html

3737

classdef tMyData < matlab.unittest.TestCase

methods (Test)

function tCreate(testCase)

writeData = [0.9 -1.1 -1.1 -0.8];

key = MyData.write(writeData);

readData = MyData.read(key);

verifyEqual(testCase,readData,writeData);

end

end

end

Test class (inherit from TestCase class)

Group of test points

Test point – a unit test

MATLAB Unit Test

Qualification

3838

press Perform press gesture on UI component

choose Perform choose gesture on UI component

drag Perform drag gesture on UI component

type Type in UI component

hover Perform hover gesture on UI component

chooseContextMenu Perform choose gesture on context menu item

dismissAlertDialog Close frontmost alert dialog box in figure window

matlab.uitest.unlock Unlock figure locked by app testing framework

matlab.uitest.TestCase.forInteractiveUse Create a TestCase object for interactive use

MATLAB Unit Test

App Unit Test Methods

https://www.mathworks.com/help/matlab/ref/matlab.uitest.testcase.press.html
https://www.mathworks.com/help/matlab/ref/matlab.uitest.testcase.choose.html
https://www.mathworks.com/help/matlab/ref/matlab.uitest.testcase.drag.html
https://www.mathworks.com/help/matlab/ref/matlab.uitest.testcase.type.html
https://www.mathworks.com/help/matlab/ref/matlab.uitest.testcase.hover.html
https://www.mathworks.com/help/matlab/ref/matlab.uitest.testcase.choosecontextmenu.html
https://www.mathworks.com/help/matlab/ref/matlab.uitest.testcase.dismissalertdialog.html
https://www.mathworks.com/help/matlab/ref/matlab.uitest.unlock.html
https://www.mathworks.com/help/matlab/ref/matlab.uitest.testcase.forinteractiveuse.html

3939

MATLAB Unit Test

4040

Effort Spent on

Automating Tests

Effort Spent on

Writing Code

Saved Effort

▪ Why Automate Tests?

MATLAB Unit Test

4141

▪ Test Automation

– Improve Quality / Reduce Risk (Bug)

– Easy to run, to Write and Maintain

– CI/CD : Continuous Integration

 Continuous Deploy/Delivery

– CI Tool Integration(Jenkins, Gitlab , Github)

CI/CD

MATLAB Unit Test

4242

MATLAB Unit Test

43

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be

trademarks or registered trademarks of their respective holders.

Thank you

	Default Section
	Slide 0
	Slide 1: Agenda MATLAB Programming Architecture Design
	Slide 2: Software Architecture Design
	Slide 3: Software Architecture Design
	Slide 4: Agenda MATLAB Programming Architecture Design
	Slide 5: Project Folder Design
	Slide 6: Project Folder Design
	Slide 7: Project Folder Design
	Slide 8: Project Folder Design
	Slide 9: Agenda MATLAB Programming Architecture Design
	Slide 10: Class(Object Oriented Programming)
	Slide 11: Class(Object Oriented Programming)
	Slide 12: Class(Object Oriented Programming)
	Slide 13: Class(Object Oriented Programming)
	Slide 14: Class(Object Oriented Programming)
	Slide 15: Class(Object Oriented Programming)
	Slide 16: Class(Object Oriented Programming)
	Slide 17: Class(Object Oriented Programming)
	Slide 18: Class(Object Oriented Programming)
	Slide 19: Class(Object Oriented Programming)
	Slide 20: Agenda MATLAB Programming Architecture Design
	Slide 21: App Architecture
	Slide 22: App Architecture
	Slide 23: App Architecture Components
	Slide 24: App Architecture Design View
	Slide 25: App Architecture Code View
	Slide 26: App Architecture
	Slide 27: App Architecture
	Slide 28: App Architecture
	Slide 29: App Architecture
	Slide 30: App Architecture
	Slide 31: App Architecture App Deployment
	Slide 32: Agenda MATLAB Programming Architecture Design
	Slide 33
	Slide 34: MATLAB Unit Test
	Slide 35: MATLAB Unit Test
	Slide 36: MATLAB Unit Test
	Slide 37: MATLAB Unit Test
	Slide 38: MATLAB Unit Test
	Slide 39: MATLAB Unit Test
	Slide 40: MATLAB Unit Test
	Slide 41: MATLAB Unit Test
	Slide 42: MATLAB Unit Test
	Slide 43

