MATLAB EXPO

SW 중심으로 진화되는 차량제어 시스템

김치경 상무, 현대자동차 차량제어전략실

현대자동차, 지난 해 아이오닉5에 이어 "세계 올해의 자동차" 2년속 수상

2022년 세계 올해의 차2022년 세계 올해의 전기차2022년 세계 올해의 자동차 디자인

2023년 세계 올해의 차2023년 세계 올해의 전기차2023년 세계 올해의 자동차 디자인

Never Just Drive

https://youtu.be/yTEdsq6KnOE

Virtual Gear Shift for EV

✓ 가상의 변속기와 엔진 모델을 차량 제어기에 SW로 탑재하여 고성능 내연기관의 감수성을 제공하는 기능

전기차 차량제어기

- PT 변속감
- 엔진 회전질감 (레드존, 퓨얼컷)
- 구동계 진동

- ✓ 음향 효과
- 엔진음 생성
- 변속효과음 연출
- 후연소음 생성

- ✓ 시각 효과
- 엔진 RPM 표시
- 기어 변속 RPM 연출
- 변속 기어단수 표시

Fun to Drive by SW

Fun to Drive by SW — Boost, Drift Mode

✓ 전기차의 전 • 후륜 모터의 동력을 독립적으로 최적 제어하여 운전의 재미를 극대화 해주는 SW 기능

부스트 모드

- ✓ 전기차 구동시스템의 최대 성능을 사용하여 특정 시간 동안 출력과 토크, 가속 응답성을 향상시키는 주행 모드
- ✓ 다이내믹 드라이빙의 차별화된 주행 감성을 제공

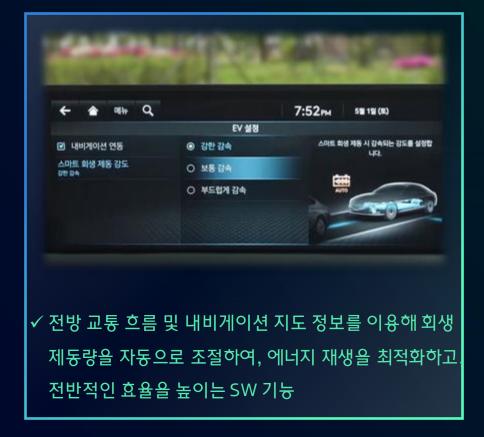
드리프트 모드

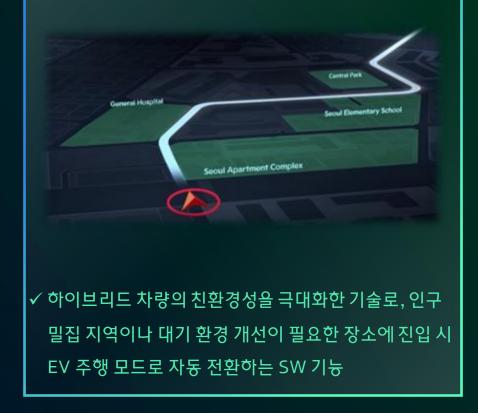
- ✓ 전 · 후륜 구동력 배분 및 제동 제어를 통해 작은 조향과 적은 악셀 페달 조작으로 드리프트가 가능토록 하는 기술
- ✓ 차량 특성을 오버스티어화 시켜 운전 즐거움을 제공

New Features by SW

✓ 지도 정보, 차량이 인식한 전방 도로정보, 운전자 주행패턴 학습 등을 활용하여 보다 스마트한 차량제어 기능

https://www.hyundai.co.kr/tv/CONT000000000023541?listYn=N


https://www.hyundai.co.kr/tv/CONT000000000025348?listYn=N


New Features by SW

✓ 지도 정보, 차량이 인식한 전방 도로정보, 운전자 주행패턴 학습 등을 활용하여 보다 스마트한 차량제어 기능

Smart Regeneration

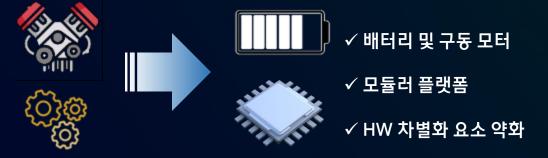
Green Zone Drive

Software Defined Vehicle (SDV)로의 전환

전동화 • EV

(Electrified Vehicle)

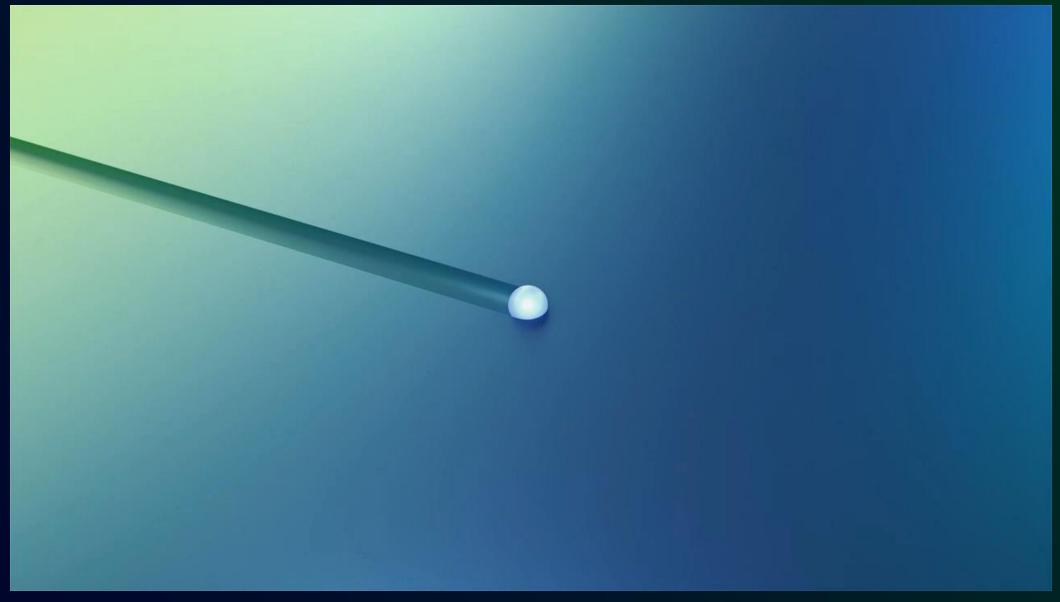
차량 성능의 핵심이 기계(엔진)에서 전장(PE, 반도체)으로 변화

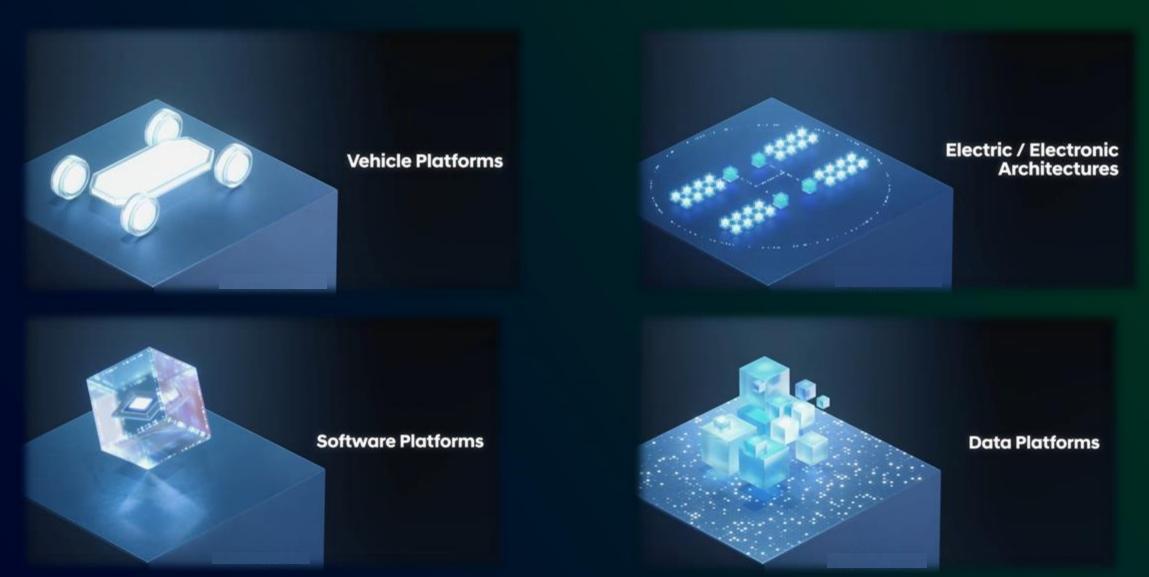


디지털화 • SDV

(Software Defined Vehicle)

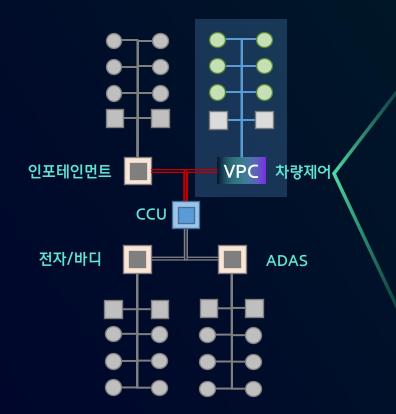
OTA를 통한 신규 서비스 제공 및 상시적 차량 성능 향상


→ 차량개발 및 서비스 운영방식 변화



SDV 전환을 위한 현대자동차의 방향성

SDV 전환을 위한 현대자동차 방향성



차량도메인제어기 Key Enablers

Expandable E/E Architecture

도메인 집중형 아키텍처 적용

Efficient SW Development

MBD 기반 도메인 ASW 개발

- ✓ 분산 되어있던 PT · 전동화 · 샤시의 차량레벨 SW를 집중화 하고, MBD 기반 내재화 개발
- ✓ 제어모델을 중심으로 설계 · 개발 · 검증 툴 체 인을 전산 시스템으로 Seamless 하게 연계

Life-Cycle SW Management

Virtual 기반 DevOps 구축


✓ SW 개발에 필요한 물리적 요소를 가상화 하여 차량 Life-Cycle 연계한 검증・배포 체계 구축

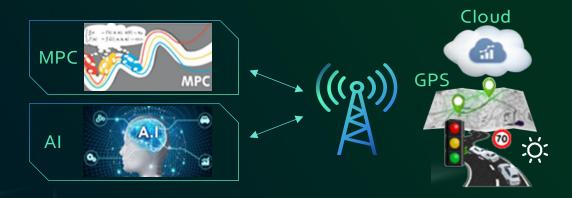
차량레벨 기능 집중화

✓ 파편화 되어 있는 차량레벨 기능을 통합하고 SW 개발 복잡도를 관리하여, 차량성능 최적화 달성

- ✓ 모션 제어 차량레벨 샤시 제어 기능 추가 통합
- ✓ 통합 열관리 냉매 시스템 통합 제어기술 내재화
- ✓ 에너지 관리 차량 및 인프라 전력관리 기능 최적화

제어기 플랫폼 표준화

✓ 고성능 연산이 가능한 표준화 된 개방형 플랫폼을 제공하여, 다양한 SW 탑재 가능토록 도메인 확장성 확보


신 모빌리티 대응을 위한 차량제어기능 탑재

통합열관리

In-Wheel

Vehicle & Cloud Oriented Platform (Micro-Controller & Application Processor)

Embedded MPC/AI

C/C++/Pyhon

SOME/IP

Linux/QNX/POSIX OS

Adaptive AUTOSAR

Application Processor

Model Based Development 확대

SW 개발 시간 단축

✓ 시뮬레이션 가능한 모델 활용

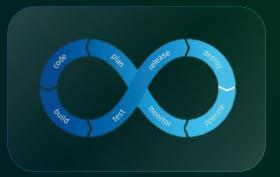
Seamless SW 개발 환경

✓ SW 개발 난이도 감소 및 품질 향상

모델 기반 Variant 관리

✓ 모델 기반으로 다양한 사양 대용

✓ 기능안전/A-SPICE 강화


✓ AUTOSAR 확대

✓ 가상화 & 자동화 검증 확대

✓ DevOps 도입

Model Based System Engineering 도입

■ SW 개발 중심의 모델링 영역을 '요구사항, Logical/Physical/Network 아키텍처' 까지 확대

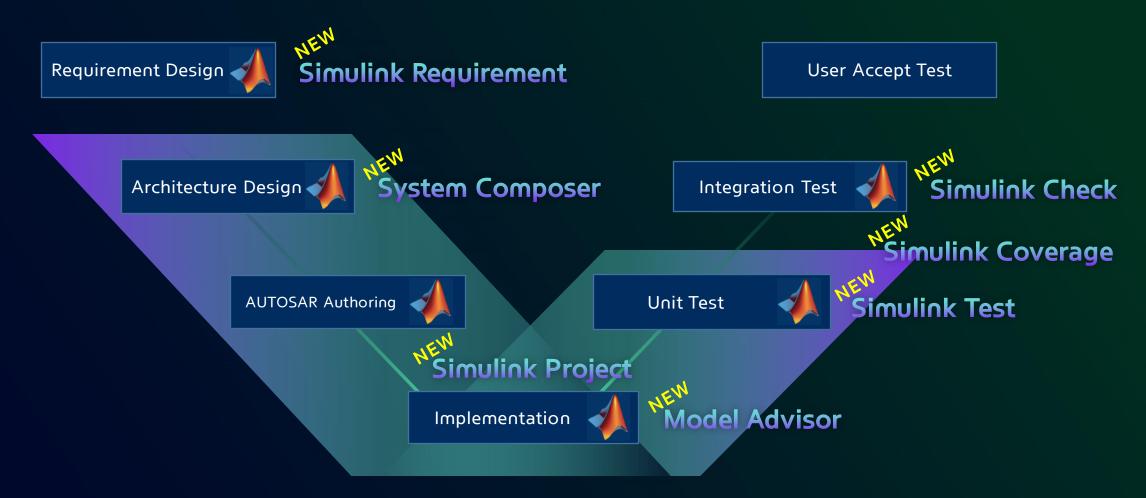
도전과제

SW 복잡도 향상 (기능집중화 및 SW 협업 규모 증가)

> 책임 범위의 확장 (e.g. 로컬 유닛 사양 관리)

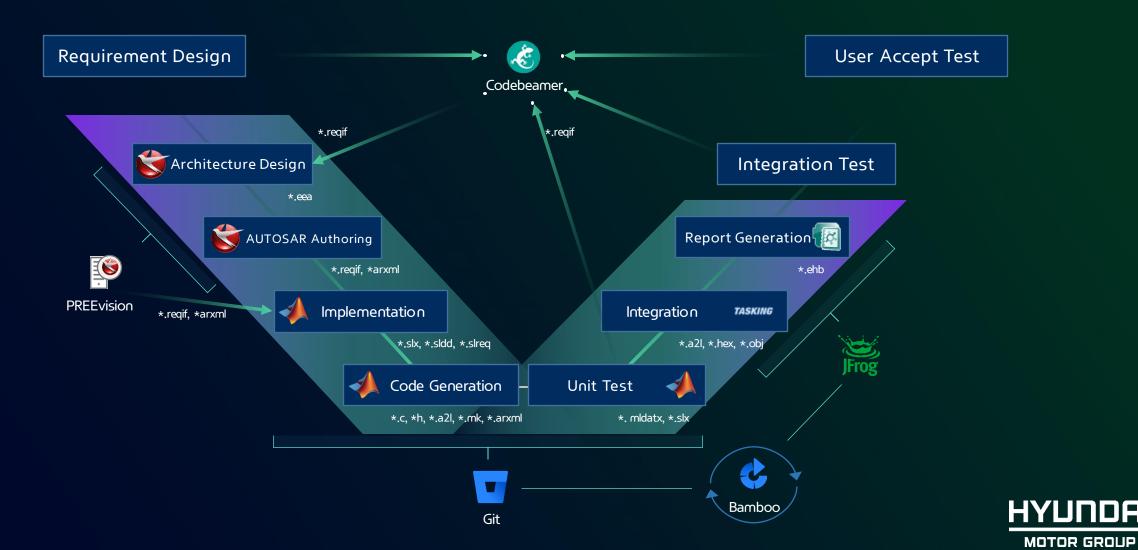
Security & Safety
(효과적인 보안/안전 인증 대응)

해결책


MBSE 도구 및 프로세스 적용

- ✓ Feature Driven Development 지원
- ✓ 시스템/SW 아키텍처 통합 설계 지원을 통한 SW 구현 연계 강화 (e.g. AUTOSAR Authoring)
- ✓ 산출물 간의 연결 관계 모델링 및 분석

MathWorks Solution 확대 적용 검토


■ 개발자 친화적인 Matlab · Simulink 중심으로 MBSE & MBD 툴체인 구성 검토

MathWorks Solution 확대 적용 검토

■ MBSE 전용 툴과 Matlab・Simulink를 연계하는, 부분적인 Solution 적용으로 MBD 개발자 환경 구축

VPC 개발 환경 (VPC Link)

■ MBSE & MBD 툴에서 동등 수준의 개발 산출물을 도출 하는 'Design and Development Framework'

X VPC Link Vision

- ➤ 표준 모델 교환이 가능한 환경을 제공하여 HMG 내외 SW 개발 조직을 **'연결'**
- > SW 개발에 필요한 자료 접근 및 지속 통합을 위한 툴 간 **'연동'** 강화

SW 생태계 구축 - "HMG MBD 컨소시엄"

✓ HMG 제어 SW 개발 경쟁력 강화를 위한 MBD 기반 개발 체계 구축 협력 강화

HMC 12개 부문 그룹사 6개 社 협력사 11개 社

SW 생태계 구축 - "지능제어 공동연구실"

✓ 지능제어 공동연구실 목적

- 제어 Item 및 방법론 기반의 제어기술 선행 개발
- HMC 제어 개발자 역량 강화를 위한 교육 프로그램 운영, 제어개발 우수 전문가 육성 지원 및 채용 연계

MATLAB EXPO

Thank you

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. Se e *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

