
0

이승현, 현대자동차

DO Qualification Kit와 모델기반
설계를 이용한 항공 Software 개발

1

Introduction to Organization and Business

▪ Advanced Air Mobility is new concept in aviation

▪ AAM ⊂ UAM(Urban) + RAM(Regional)

▪ Benefits of AAM

• Reduced commute times: significantly reduce commute

times, especially in congested urban areas

• Increased access to rural areas: make it easier for people

to access rural areas, which are often underserved by

traditional transportation options

• Improved air quality: electric propulsion system, so they

produce zero emissions

• Increased safety: expected to be safer than traditional

aircraft, thanks to their advanced safety features and

autonomous flight systems

Hyundai Motors Company AAM Division

2

Overview

▪ What DO-178C/331 Standards

▪ Why Model Based Design

▪ DO Qualification Kit

▪ SW Development Infrastructure

Development of Avionics SW using DO Qualification Kit and Model Based Design

▪ Process with DO Qualification Kit and MBD

• Requirement

• Model Architecture

• Model Static Analysis

• Model Dynamics Analysis

• Code Generation

• Code Verification

• SIL/PIL Test

• Tool Qualification

• Strategy of Continuous Integration/Deployment

3

DO-178C/331 Standards

▪ RTCA published : RTCA(Radio Technical Commission

for Aeronautics) is a United States non-profit

organization that develops technical guidance for use

by government regulatory authorities and by industry

▪ Primary document by which the certification authorities

such as FAA, EASA to approve all commercial

software-based aerospace systems

▪ Guideline = Process + Objective + Activity + Output

• each process presents the objective to be

achieved. as the process, it presents proper

activities to achieve this objective

DO-178C : Software Considerations Airborne Systems and Equipment Certifications

DO-331 : Model-Based Development and Verification Supplement to DO-178C

Process

Objective

Activity

Output

4

DO-178C/331 Standards

▪ The software level of a software component, also known as the Design Assurance

Level(DAL), is based upon the contribution of software to potential failure conditions as

determined by the system safety assessment process

▪ As the software level, Objective to accomplish is different (Level A : MC/DC 100%)

Software

Level
Failure condition

Level A
Catastrophic - Failure may cause deaths,

usually with loss of the airplane

Level B

Hazardous - Failure has a large negative

impact on safety or performance, or reduces

the ability of the crew to operate the aircraft

due to physical distress or a higher workload,

or causes serious or fatal injuries among the

passengers.

Level C

Major - Failure significantly reduces the

safety margin or significantly increases crew

workload. May result in passenger discomfort

(or even minor injuries).

Level D

Minor - Failure slightly reduces the safety

margin or slightly increases crew workload.

Examples might include causing passenger

inconvenience or a routine flight plan change.

5

Why Model Based Design - Traditional design flow

Some common issues

▪ Communication between teams

• Design and interface specifications are commonly in a written

document that must be read and understood by design engineers

▪ Recreation of work

• Software engineers might have to rewrite an algorithm that a design

engineer has been using

▪ Problems found late in design process

• If a problem exists due to integration of components, it is not

discovered until the testing phase of the design cycle

Traditional design flow

Traditional design flow
1. Requirement and Specifications – Systems engineers define functional
requirements and interface specifications on different components of the design.

2. Design - Design engineers, sometimes working in many separate teams,
create models of the system components

3. Implementation - The models created by the design engineers are realized in

the physical world. This includes software engineers writing embeddable code for
algorithms created by the design engineers

4. Test and Verification - The different system components are tested, as is the
overall design, to ensure their function as expected

6

Why Model Based Design - 4 key features

Executable Specification from Models

Design with Simulation

Implementation with Automatic Code Generation

Continuous Test and Verification

7

DO Qualification Kit

Requirements

Models

Source Code

Object Code

Validate

Simulink

&

Stateflow

Trace:

Simulink Requirements

System Design

Description

Conformance:

Simulink Check

(Model Advisor)

Embedded Coder
Conformance:

Polyspace Bug

 Finder

Compiler/IDE

Verify:

Simulink Test with PIL mode

Polyspace Code Prover

Simulink Coverage SIL mode

Trace:

One Time

Trace for Level A

• Qualified tools

Verify:

Simulink Test

Simulink Coverage

Simulink Design Verifier

Verify:

Simulink Design Verifier

Simulink Coverage

Simulink Test with PIL mode

Polyspace Code Prover

Simulink Coverage SIL mode

Trace:

Model/Code Trace Report

Simulink Code Inspector

Verify:

Simulink Code

Inspector

Polyspace Bug

Finder & Code

Prover

▪ DO Qualification Kit = Qualified tools + 3 elements for Tool Qualification(documentation, test cases, procedures)

▪ Tool qualification have to be done every project, and an error in the tool may have a negative impact on software

functionality if the tool inadequately performs its intended functions. In order to avoid this risk and to ensure the

integrity of the tool functionality. the tool should be developed and verified using adequate processed

8

SW Development Infrastructure

Requirement

Management

Issue & Risk

Management

Development

Support

Test

Management

Change

Management

Build & Release

Management

ALM

Requirement Editor

request to release

source control

trace to test case

trace to design

code verification

model static/dynamics analysis

request to verification

planned

implemented

link via ReqIF

9

Requirement - Adequate High-Level Requirement

▪ In DO-331 Model Based Design, definition about two type requirements

R M MV CVCG

HLR Model

Implement/modify

Requirement Based Test

-> compare baseline(pass/fail)

 measure model coverage

-> not enough coverage

-> refine HLR
-> identify derived requirement

-> find dead logic

▪ Condition of ideal HLR

– Aspect of developer : is this HLR adequate to implement model?

– Aspect of verifier : is this HLR adequate to extract test vector?

▪ It is difficult to write adequate HLR at once

– It need to be completed through the iteration

▪ DO-331 standard require to make the document

– SRStd(Software Requirement Standard)

HLR

LLR = Design Model

10

Requirement – Model Hierarchy and Requirement Format

▪ Format : (function group) (shall) (process) (object) (details) (condition)

▪ Example : (A Model) (shall) (change) (the operation mode) (according to the system mode and the previous operation

mode) (If the system mode input is not defined, the operation mode shall maintain the previous mode)

▪ Requirements should be written about the functions that the function group should have. and then developer have to

Implement unit models based on these requirements from its function group

▪ It should be clearly written to identify input and output name and the unit model should be designed using same name

▪ It should be written about interface requirement including min/max range, data type, unit and resolution

R M MV CVCG

Top Model

A Model B Model C Model

A_1

Model

A_2

Model

B_1

Model

B_2

Model

C_1

Model

C_2

Model

Application

(ex: flight control system)

Lib Lib Lib Lib

function group

(ex: guidance/control)

Port name correspond

to requirement

unit

Implemented

from

11

Requirement - Link design and tests

▪ Analyzes the traceability to identify gaps in implementation or testing

▪ Author requirements in CodeBeamer(ALM)

▪ Export via ReqIF file

▪ Simulink Requirements Import from ReqIF file

▪ Link requirements to design and tests

R M MV CVCG

export

Design Status Testing Status

12

Model Architecture – Concurrent Development within team

▪ For Concurrent Development individually within the team

R M MV CVCG

Simulink Project Data Dictionary

key Considerations

▪ Componentization

– Model (function group model, unit model)

– Data Dictionary (private, shared)

– Requirement

▪ Commonization

– Which model to make Library

– Shared interfaces (bus signal)

▪ Common environment management

– How to organize Simulink Projects with referencing projects

– How to manage code-gen and cache folders

– How to make collaborative workflow on a project

+

Top Model

Function

Group_1

Function

Group_2

Unit2

Unit1

DD

DD1

(private)

DD2

(private)

Shared

DD

DD3

(private)

DD4

(private)

13

Model Architecture – Simulink Project + Data Dictionary

R M MV CVCG

▪ Why use Simulink Project

• Projects can promote more efficient team work and individual

productivity by helping you

• Find all the files that belong with your project

• Create standard ways to initialize and shut down a project (*.mat, DB)

• Create, store, and easily access common operations

• View and label modified files for peer review workflows

• Share projects using built-in integration with Git™, external source
control tools

• Important file and folder organization

▪ Why use Data Dictionary

• Data organization

• Tight Connection to Simulink model

• Separate model's global design data from other data

• Partition and share data via referenced dictionaries

• Change tracking workflow

• Change detection, last modified

• Integration with file-based CM system and Simulink Projects

Best practice file/folder Organization

(Helicopter Flight Control MBD Example)

14

Model Architecture – Considerations of Unit-level Model

R M MV CVCG

Model

Unit2Unit1 Unit3

Model

Model

Team collaboration

If the model have to be designed from 3 engineers

It should be partitioned to Unit

Reusability

The model that can be used in multiple places

throughout an integration model should be Unit

Testability

The smaller the model, the more easy the test

but if the model is more separated, model files and

test case will be increased

Model Complexity

If complexity of model is higher than the criteria,

model needs to be partitioned to Unit

Model

15

Model Architecture - Model Reference Features

▪ Traceability : model references are atomic, meaning they can

provide traceability between the model and the generated code

▪ Reusability : referenced model is forced to be completely self-

reliant so it is easy to reuse

▪ Unit Testing : referenced model behaves the same way during a

standalone simulation as it does when referenced from a parent

simulation

Why Unit-Level Models should be Model Reference

R M MV CVCG

▪ Source Control : model is stored in a separate file, this allows for concurrent development, as well as the ability to

independently keep separate versions of each component

 -> as the model has changed, it need less regression test.

▪ Model Guideline about interface: an important aspect of model reference is that they cannot propagate signal properties

across their boundaries. This is different from subsystems, which do allow signal property propagation.

 -> As DO-331 standard, interface of unit models must be defined by specific properties. If the wrong data type is

 transmitted through signal propagation in the previous model, it can be found. but subsystem can’t

16

Model Architecture - Modeling Standard
▪ Why need Modeling Standard : when multiple people works on the same project, you may

find inconsistencies among their modeling styles. For increased consistency, you may find it

helpful to enforce model standard on all models within a project

R M MV CVCG

▪ Performance
Check under Code Generation Efficiency can help identify modeling
constructs that decrease the efficiency of the generated code.

▪ Accuracy
There is a check under Simulation Runtime Accuracy Diagnostics that
ensures data store memory read/write diagnostics are enabled

▪ Predictability
The Managing Library Links And Variants checks can find disabled library
links in your model, thus helping to ensure that your library reference blocks

behave as you expect

▪ Consistency
The Requirements Consistency Checking task helps ensure requirement
links match up with the requirement documents

17

Model Architecture – Example of Model Standard

R M MV CVCG

Referencing from DO-331 Standard

18

Model Static Analysis - Simulink Checks(Model Advisor)

R M MV CVCG

▪ Improve the consistency, clarity, and readability of your models

▪ Identify model settings, blocks, and block parameters that affect simulation behavior or code generation

Model

Conform

link

19

Model Static Analysis – Example of MAB Guideline

▪ Example of MAB guideline : db_0132: Transitions in flow charts

flow chart

→ Condition: Horizontal transition

→ Action: Vertical transition

R M MV CVCG

Model

Conform

20

Model Static Analysis – Simulink Design Verifier

▪ Objective : Design error detection

• Dead logic

• Integer or fixed-point data overflow

• Division by zero

• Out of bound array access

• Data store access violations

• Specified block input range violations

R M MV CVCG

Model

Conform

link

21

Model Dynamics Analysis – Requirement Based Test

▪ Workflow of Requirement Based Test

1. Analysis requirement

• Identify requirement type (related to time or logical)

• Find input and output correspond to model (if enumeration type, find
mapped numerical variables)

• Estimate expected output and set the baseline (pass/fail)

• if not enough, find addition documents(ex: SDD)

2. Make test harness model

• Choose & make adequate test input to get (test sequence, excel, etc.)

• Define inputs and assessments based on logical, temporal conditions

3. Run and evaluate test result via Test Manager

• Author, execute, manage test suites(test cases)

• Review, export, report

• Collect model coverage

R M MV CVCG

Test Harness Model

Model

Requirements

Verify

the model to be tested

22

Model Dynamics Analysis – Model Coverage

▪ DO178C/331 require to specific model coverage

according to software level

R M MV CVCG

Model

Requirements

Verify

▪ Model coverage is indicator to confirm that

sufficient tests have been performed

▪ Measure model coverage, if not enough coverage

• Reanalysis the requirement and extract more test vector

• Identify derived requirement and extract test vector

• Check dead logic and modify the model

ModelTest Case

collect

coverage data

23

Code Generation

▪ Consideration of code generation

– Process and Scripts need to allow models developed through multiple

developers to generate code with the same code generation

configuration

– Process need to apply the suitable code configuration when the target

has changed - multiple target

– Even if the config file is changed by the developer's mistake, you need to

keep the reference file separately and keep the code-gen consistency to

connect the config file when executing the code generation script

R M MV CVCG

Model

Code

for Target A

Code

for Target B
Code

for Target C

Multiple target

Code

Model

Code Generation

Model

Simulink Coder

Embedded Coder

Code

24

Code Verification – Code Inspector

▪ Simulink Code Inspector provides detailed model-to-

code and code-to-model traceability analysis. It

generates functional equivalence and traceability

reports that you can submit to certification authorities to

satisfy DO-178 software coding verification objectives

▪ Code Inspection workflow

1. Code inspection compatibility check via model advisor

2. Generate code from model

3. Inspect code and review inspection results

4. Generate code inspection and traceability matrix

5. If failed, check model pattern and code generation config

R M MV CVCG

Trace

Code

Model

25

Code Verification – Bug Finder and Code Prover

▪ Bug Finder checks compliance with coding rule standards such as MISRA C®, MISRA C++, AUTOSAR

C++14, CERT® C, CERT C++, and custom naming conventions. It generates reports consisting of bugs

found, code-rule violations, and code quality metrics, including cyclomatic complexity.

▪ Polyspace Code Prover™ proves the absence of overflow, divide-by-zero, out-of-bounds array access,

and certain other run-time errors in C and C++ source code. It produces results without requiring

program execution, code instrumentation, or test cases

R M MV CVCG

Code

Conform

26

SIL(Software In-the Loop) & PIL(Processor In-the Loop) Test

R M MV CVCG

▪ Objective : equivalence tests(back-to-back tests) in different environments

▪ SIL : test generation production code with your environment or plant

model to verify a successful conversion of the model to code

▪ PIL : evaluate the behavior of a candidate algorithm on the target processor

Method Execution Environments Feature

MILS(Model In the

Loop Simulation)
- Verify the processing output about

software

SILS(Software In the

Loop Simulation)

- Verify the Auto-Generated

Code(C/C++) from model
- Compare between Model and

Code(Equivalence)

PILS(Processor In the

Loop Simulation)

- Actual CPU operation of the code,

and the cross-compiler/linker
setting on target CPU

- Processing time, memory usage

evaluation

Flight Control Aircraft Model

Flight Control Aircraft Model

Flight Control Aircraft Model

Executable

Object Code

Requirements

Verify

27

Tool Qualifications

Tool Qualification Plan (TQP)

Tool Operational Requirement (TOR)

Test Procedure and Test Cases (TCP)

▪ Tools can assist software development to analyze and potentially improve system safety by the

automation of the activities performed and by predictably performing functions that may be prone

to human error.

▪ However, an error in the tool may have a negative impact on software functionality if the tool

inadequately performs its intended functions. In order to avoid this risk and to ensure the integrity

of the tool functionality. the tool should be developed and verified using adequate processed.

▪ Tool qualification workflow

1. Provide certification authorities with a Tool Qualification Plan

2. Document Tool Operational Requirements

3. Verify that the tool satisfies Tool Operational Requirements using Test
Procedure and Test Cases

4. Provide traceability between model objects, generated code, and model
requirements

5. Provide certification authorities with Tool Qualification Results

28

Relation between DO Qualification Kit and Life Cycle Data

- Planning Process - Development Process

- Verification Process - SW Configuration Management Process

• MB11.1 Plan for Software Aspects of Certification(PSAC)
• MB11.2 Software Development Plan
• MB11.3 Software Verification Plan
• MB11.4 Software Configuration Management Plan
• MB11.5 Software Quality Assurance Plan
• MB11.7,8 Software Requirements, Design and Code Standards
• MB11.23 Software Model Standard(Only MBD)

• MB11.9 Software Requirements Data
• MB11.10 Software Design Description
• MB11.11 Source Code
• MB11.12 Executable Object Code
• MB11.22 Parameter Data Item File
• MB11.21 Trace Data

• MB11.13 Software Verification Cases and Procedures
• MB11.14 Software Verification Results
• MB11.17 Problem Reports
• MB11.21 Trace Data

• MB11.18 Software Configuration Management Records
• MB11.17 Problem Reports
• MB11.16 Software Configuration Index
• MB11.15 Software Life Cycle Environment Configuration Index

- Software Quality Assurance Process - Certification Liaison Process

• MB11.19 SQA Records • Software Accomplishments Summary
• MB11.1 PSAC
• MB11.16 Software Configuration Index

▪ To comply standard, need to prepare 23 artifacts

– The blue artifacts directly related in Mathworks DO Qualification Kit with MBD process

29

Strategy of Continuous Integration/Deployment

▪ Need to setup strategy about applying CI/CD

• all process are not able to be accomplished at once

• considering team organization situation (ex: after code gen.)

• how much automate and which process have to review manually

▪ Jenkins call MATLAB script to execute each process

PROCESS CODE DESCRIPTION TRIGGERD BY ARTIFACTS DEPENDENCY/ERROR COUNTERMEASURE REMARKS

REQ DEV A0

B0 Model Reference

B1 Harness Model, Test Vector

C0 dead logic, run-time error Model pushed to git repository

analysis report

(derived requirements) A0 B0

C1

model guidelines

(include SLCI compatibility) C0-PASS

analysis report

(model modification) guidelines rule configuration B0 C0

DYNAMIC ANALYSIS
D0 Requirement based Test C1-PASS

analysis report

(pass/fail, coverage) model, harness and test vector A0 B0 B1* C0 C1 B1 Only, if missing coverage

CODE GENERATION
E0 Code Generation D0-PASS generated code

model configuration and

parameters B0 C1

F0 Code Inspection E0-PASS inspection report B0 C0 C1 D0 E0

F1 Equivalance Test (SIL) F0-PASS

analysis report

(code coverage) B0 C0* C1* D0* E0* (*): Not required, but recommended

- Equivalance Test (PIL)

F2 Polyspace Bug Finder F1-PASS

analysis report

(MISRA, defects, CERT-C) B0* C0 C1 D0 E0 (*): justification: comments at models

F3 Polyspace Code Prover F2-PASS

analysis report

(run time errors: g/o/r/gr) B0* C0 C1 D0 E0 F0 F1

red, green: model modification

(*): orange, green: justification

STATIC ANALYSIS

SL MODEL DEV

CODE VERIFICATION

RETRUN TO

30

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be

trademarks or registered trademarks of their respective holders.

Thank you

	Slide 0
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

