MATLAB EXPO

DO Qualification Kit2} =&l 7|t
HAHE o|2ct g8 Software 7HE

058, HLYAE

®

<) MathWorks

MATLAE

Introduction to Organization and Business

Hyundai Motors Company AAM Division

Advanced Air Mobility is new conceptin aviation
AAM c UAM(Urban) + RAM(Regional)

Benefits of AAM

* Reduced commute times: significantly reduce commute
times, especially in congested urban areas

* Increased access to rural areas: make it easier for people
to access rural areas, which are often underserved by
traditional transportation options

* Improved air quality: electric propulsion system, so they
produce zero emissions

* Increased safety: expected to be safer than traditional
aircraft, thanks to their advanced safety features and
autonomous flight systems

Overview

MATI

Development of Avionics SW using DO Qualification Kit and Model Based Design

= What DO-178C/331 Standards = Process with DO Qualification Kit and MBD

= Why Model Based Design .
= DO Qualification Kit ’

= SW Development Infrastructure

Requirement

Model Architecture

Model Static Analysis
Model Dynamics Analysis
Code Generation

Code Verification

SIL/PIL Test

Tool Qualification

Strategy of Continuous Integration/Deployment

MATLAE

DO-178C/331 Standards

DO-178C : Software Considerations Airborne Systems and Equipment Certifications
DO-331 : Model-Based Development and Verification Supplementto DO-178C

= RTCA published : RTCA(Radio Technical Commission
for Ae.ron.autlcs) Is a United Statgs non__prOflt The high-level requirements are refined through one or more iterations in the software
organlzatlon that develops technical gwdance for use design process to develop the software architecture and the low-level requirements that
by government regulatory authorities and by industry can be used to implement Source Code.

tn
2
un
S
=
=
==
~
"
S
o
£,
i -]
=
-
=
=
A~
"o
o
wn
U
—
o
O
M
n
n

5.21 | Software Design Process Objectives | Objective
= Primary document by which the certification authorities o T T T
. The objectives of the software design process are:
such as FAA, EASA to approve all commercial
software-based aeros pace SySte ms a. The software architecture and low-level requirements are developed from the high-
level requirements.
= Guideline = Process + Objective + Activity + Output b. Derived low-level requirements are defined and provided to the system processes.
including the system safety assessment process.
- each process presents the objective to be 522 ! Software Design Process Activities | Activity
. . e o o o o e e e e e -t
achle_'\(ed. as the proce_SS, |i prgsents proper The software design process inputs are the Software Requirements Data. the Software
activities to achieve this objectlve Development Plan. and the Software Design Standards. When the planned transition

criteria have been satisfied. the high-level requirements are used in the design process to
develop software architecture and low-level requirements. This may involve one or more

. 4. lower levels of requirements.
Federal Aviation y e e -
Administration it Output The primary output of the process is the Design Descri&tic& (fe il .E)) thich includes

European Union Aviation Safety Agency 1e Soffwale archifecfire and the loW-1&vel TeqUirements.

DO-178C/331 Standards

= The software level of a software component, also known as the Design Assurance
Level(DAL), is based upon the contribution of software to potential failure conditions as
determined by the system safety assessment process

= As the software level, Objective to accomplish is different (Level A : MC/DC 100%)

Software Failure condition
Level

Level A

Level B

Level C

Level D

Catastrophic - Failure may cause deaths,
usually with loss of the airplane

Hazardous - Failure has a large negative
impact on safety or performance, or reduces
the ability of the crew to operate the aircraft
due to physical distress or a higher workload,
or causes serious or fatal injuries among the
passengers.

Major - Failure significantly reduces the
safety margin or significantly increases crew
workload. May result in passenger discomfort
(or even minor injuries).

Minor - Failure slightly reduces the safety
margin or slightly increases crew workload.
Examples might include causing passenger
inconvenience or a routine flight plan change.

MAT

Table A-7 Verification of Verification Process Results

o)
—_ g Applicability by I Control Category
Objective kT Software Level Output by Software Level
<
Description Ref Ref I A B C D Data Iltem Ref A B C D
Test procedures are gl Software
o B45b | 645 ® OO Verification 1114 | @ | @ | @
carrect. Results
Test results are
carrect and Soﬂware g
di) 6.4.5¢c 645 ® | O | O Verification 11.14 2| @@
IScrepancie:
- Results
explained.
:E;Sr: lceov\.:rage of Software
n : ; . p
requirements is 6.4.4.a 6.4.4.1 ® | O | O | O | Verfication 11.14 2| @ | @@
A Results
achieved.
Tﬁ:\?;emge of Software
Aauirements is 6.4.4b 6.4.4.1 ® O | O Verification 1114 2| @ | @
" Results
acieved | o | e — | R
Test coverage of
software structure 6442a I Software
(modified 6.442b e) -
condition/decision | 844C | g4404 b yerfication | 1114 | (2
coverage) is 6443 I
achieved,
Test coverage of 6442a Software
software structure 6.442b o y |
(decision coverage) 6.4.4.c 6442d L4 o EZ:ETI:“O“ 114 2 @
is achieved 6443
Test coverage of
software structure gjj%g Software
(statement 6.4.4.c 64424 ® | ® O Verification 11.14 2| @ | @
coverage) is 6.4-4-3- Results
achieved. o

MATLA

Why Model Based Design - Traditional design flow

\ Define B\ Integration, Test,
~ Requirements and Calibration
System-Level System-Level
Specification Integration and Test
Subsystem Subsystem
Design Integration and Test
Subsystem
Implementation

Traditional design flow

Traditional design flow
1. Requirementand Specifications — Systems engineers define functional
requirements and interface specifications on different components ofthe design.

2. Design- Designengineers, sometimesworking in many separate teams,
create models of the system components

3. Implementation- The models created by the designengineers are realized in
the physical world. This includes software engineers writing embeddable code for
algorithms created by the designengineers

4. Test and Verification - The different system components are tested, as is the
overall design, to ensure their function as expected

Some common issues
= Communication between teams

« Designand interface specifications are commonlyin a written
documentthat must be read and understood by designengineers
= Recreationof work
« Software engineers might have to rewrite an algorithm that a design
engineer has beenusing
= Problemsfound late in designprocess

« Ifa problem exists due to integration of components, it is not
discovered until the testing phase of the designcycle

MATLAB EX

Why Model Based Design - 4 key features

Executable Specification from Models Implementation with Automatic Code Generation

Traditional Workflow

E Requirements

A\.\ oh] N

&)
Systems Design

Engineer Engineer

Model-Based Design Workflow

. Systems Design Software
i = 2 ™ % |
o> " a Engineer Engineer Engineer

év 4 >
Systems Design
Engineer Engineer
Design with Simulation Continuous Test and Verification

* Polyspace® for C/ C++ Code Verification

Traceability f !«? (Continuous test
: e md\cxmcauon
) % r
g.) o‘"—
\"\. > ~
N)

X=F(x:1)
y=g(x,1)

7

Systems Design Software
Engineer Engineer Engineer

&) =
Design n Reporting

Engineer

MATLAL

DO Qualification Kit

DO Qualification Kit = Qualified tools + 3 elements for Tool Qualification(documentation, test cases, procedures)
Tool qualification have to be done every project, and an error in the tool may have a negative impact on software
functionality if the tool inadequately performs its intended functions. In order to avoid this risk and to ensure the
integrity of the tool functionality. the tool should be developed and verified using adequate processed
Validate ..
alidate “ . Qualified tools
USSR = Requirements
Trace: / ’ Vgrify:_
Simulink Requirements ! Simulink Simulink Test
System Design ' & Conformance: Simulink Coverage
Description . Stateflow Simulink Check Simulink Design Verifier
_~{Madel Advisor)
Irzzz=-- Models
- Verify:
g Simulink Test with PIL mode
Trace: Rl Conformance: Verify: Polyspace Code Prover
Model/Code Trace Report (\ Embedded Coder Polyspace Bug Simulink Design Verifier Simulink Coverage SIL mode
Simulink Code |nSpeCt0r \\\\ Flnder Simulink Coverage
TS v Simulink Test with PIL mode
el erify: Polyspace Code Prover
——————————— —» Source Code Simulink Code Simulink Coverage SIL mode
/,/‘ Inspector
. 7 Polyspace Bug
-Cl-)rr?geﬁme (\ Compiler/IDE Finder & Code
Trace for Level A "< __
‘__\ \ 4
------- » Object Code

MATLA

SW Development Infrastructure

—— implemented

-

Development

————— » planned
ALM
‘\ Requirement Editor
€3 codebeamer | X
I| link via ReqlIF .

Requirement ,v-iil J|rq——-----:::==> & Confluence

Management 1---" -7

Issue & Risk ‘;’_‘-:" ————— 4\

Management Rl Ml&%%EINK source control

]
~& GitLab

Support L-
traceto test case
Test e~
Management
Change e - —-=»
Managemen "
anagement requestto verification
Build & Release |, += _
Management requestto release

P

Jenkins ——
code verification

POLYSPACE’

[IR M _» MV _» CG_» CV >

Requirement - Adequate High-Level Requirement

In DO-331 Model Based Design, definition about two type requirements

the

following:

Any requirement contained in a Specification Model.

Any requirement from which a Design Model 1s developed.

For

the purpose of this supplement, the term “low-level requirement” refers to:

For the purpose of this supplement, the term |“high-1evel requirement” refers to either of

HLR

Any requirement contained in a Design Model LLR = Desi gn Mo del

MATLAB E

Condition of ideal HLR

— Aspect of developer : is this HLR adequate to implement model?

— Aspect of verifier : is this HLR adequate to extract test vector?

It

s difficult to write adequate HLR at once

It need to be completed through the iteration

DO-331 standard require to make the document

SRStd(Software Requirement Standard)

Implement/modify

=
Requirement Based Test
-> compare baseline(pass/fail)
measure model coverage
-> not enough coverage
-> refine HLR

-> dentify derived requirement
-> find dead logic

| JIR» M > MV > cG » cv > MATLA

Requirement — Model Hierarchy and Reguirement Format

Application
(ex: flight control system) Top Model
function group A Model — B Model - C Model -

ex: guidance/control -_..\

o9) _— O O l\' T 1—#\

______ — e A 2 B 1 B 2 C1 C?2 lép . €\ ,:/l
r ; Model Model Model Model Model Model & /°
I unit W -~ Model
I Implemented : i Lib Lib Port name correspond
I from Sl L ! ! to requirement

| = Format: (functiorll group) (s/hall) (pr9cess) (objelct) (details) (condition)

v "4 '4
== Example : (A Model) (shall) (change) (the operation mode) (according to the system mode and the previous operation
mode) (If the system mode input is not defined, the operation mode shall maintain the previous mode)

= Requirements should be written about the functions that the function group should have. and then developer have to
Implement unit models based on these requirements from its function group

= |t should be clearly written to identify input and output name and the unit model should be designed using same name
= |t should be written about interface requirement including min/max range, data type, unit and resolution 10

,_-> M > MV » CG » CV » MATLAB EX
Requirement - Link design and tests

= Analyzes the traceability to identify gaps in implementation or testing

_ _ Design Status Testing Status
= Author requirements in CodeBeamer(ALM)

Implemented Verified

= Export via ReqlF file _: .
= Simulink Requirements Import from ReqlF file - - ~
. . .)

= Link requirements to design and tests

Implemented: 16, Justified: 0, Mone: 2, Total: 18

- 2
Simulink Requirements™ —
s Interchange [Format (%) Helicopter_System_Req Implel | |entS =
Vv g Importl References tofHelicopter_System_Requ ,5
v E 1 Helicopter Fligiht Control System Requi =l i
Ef 11 Introduction, =
codebeamer AT |
v ET 13 System Re@firements ArChIt'eCture
[Eg i / Design
- o -
- =
= .
] 2
L J
i mplemented: 16, Justified: 0, None: 2, Tota a
= elicopte! ght Control So a ui o Test Mar
i E 11 Introduction
B 12 System Description - — !
) I v B 13 High-Level Software Requirements [Ak voner_REQ_Bused_Feat
B 131 Pilot Input Signal Processing V 'f' "
E 132 Hydraulic Actuator Feedback e rl IeS vera
& 133 Hydraulic Actuator Drive
IBM Rational DOORS E 134 Hydraulic Actuator Loop Control
\ / E 135 Multi-Variable Inner Loop Control
A 4

11

MATLA

> R DM » MV _» CG_» CV >
Model Architecture — Concurrent Development within team

= For Concurrent Development individually within the team

Simulink Project + Data Dictionary

key Considerations
Componentizaton | gy [FTTT==-=- -[Top Model]
— Model (function group model, unit model)
— Data Dictionary (private, shared)
— Requirement

Function
Group_1

commonizaton N P ____ Function
Group_2

— Which model to make Library
— Shared interfaces (bus signal)
= Common environment management
— How to organize Simulink Projects with referencing projects
— How to manage code-gen and cache folders
— How to make collaborative workflow on a project

—
—
—_—
—
—
—
=

12

> R_D> M _» MV_» CG_» CV > MATLAE
Model Architecture — Simulink Project + Data Dictionary

= Why use Simulink Project = Do rknng = .
« Projects can promote more efficientteam work and individual b :E
. - = DO_02_Requirements viE
prOdUCtIVIty by helplng you speci"iiqat:lcr-im v’ﬁ MB.11.21 TD, MB.11.9 5...
* Find all the files that belong with your project © B erfication ecuts v ERSTEETIES
. T . * = | Actuator_Control vig
Create standard ways to initialize and shut down a project (*.mat, DB) | = 7 =rcore = 81110 50D, MB11.2.
« Create, store, and easily access common operations = g o Actustor. Contrlsicd =
+ Viewand label modified files for peer review workflows B locaDD Ackster Contrlm | ¥
° : H ilin i H H +TM %) Actuator_Control.slmzx ¥
Share projects using built-in integration with Git™, external source Bl Actuator Contro i E
(o10) ntl‘0| tOO|S) cpen_Actuator_Centrel.m v
. . . = test_cases wﬁ MB.11.13 SWCP, MBI ..
* Important file and folder organization HLR =
LLR v
verification_results v MB.11.14 SWR, MB11.2 ..
AHRS_Woter viH
. . . ' ‘,E
= Why use Data Dictionary i S, =
. . ® | | InnerLoop_Control v
* Data organization @ | Outertoop Cortrol =
Tight Connectionto Simulink model = B oG on e -
. Separate model's global design data from other data s et = VETITISC MBITIZ
Partition and share data via referenced dictionaries = & B Ma 115 stc o3 s el
. ME_11_16_5Cl v’ﬁ MEB.11.16 5CI
« Change tracking workflow ME 1 1y P 'E o117 o
H s ME_11_18_SCMR v MB.11.18 SCMR
Change detection, last modified ME_ 11 19.50AR = V311 10 soAn
- Integration with file-based CM system and Simulink Projects yig g :E V1122 o
DO_06_ToolQualification viH

Best practice file/folder Organization
(Helicopter Flight Control MBD Example)

> R >WM > MV »cG »cv > MATLA
Model Architecture — Considerations of Unit-level Model

Team collaboration Testability
If the model have to be designed from 3 engineers The smaller the model, the more easy the test
It should be partitioned to Unit but if the model is more separated, model files and
test case will be increased
)
Model 0 i N Model
e AR % i
. > > >
Unitl Unit2 Unit3 o LS LS Model
L
Reusability Model Complexity
The model that can be used in multiple places If complexity of model is higher than the criteria,
throughout an integration model should be Unit model needs to be partitioned to Unit

Model I

Complexity 0 50 100 150 200

> R >WM > MV »cG »cv > MATLA
Model Architecture - Model Reference Features

Why Unit-Level Models should be Model Reference

= Traceability : model references are atomic, meaning they can
provide traceability between the model and the generated code

= Reusability : referenced model is forced to be completely self-

reliant so it is easy to reuse /)
= Unit Testing : referenced model behaves the same way during a ‘t*E}E & (L &

standalone simulation as it does when referenced from a parent B

simulation

= Source Control : model is stored in a separate file, this allows for concurrent development, as well as the ability to
independently keep separate versions of each component

-> as the model has changed, it need less regression test.

= Model Guideline about interface: an important aspect of model reference is that they cannot propagate signal properties
across their boundaries. This is different from subsystems, which do allow signal property propagation.

-> As DO-331 standard, interface of unit models must be defined by specific properties. If the wrong data type is
transmitted through signal propagation in the previous model, it can be found. but subsystem can’t

15

MATLAB

> R_D> M _» MV_» CG_» CV >
Model Architecture - Modeling Standard

= Why need Modeling Standard : when multiple people works on the same project, you may
find inconsistencies among their modeling styles. For increased consistency, you may find it

helpful to enforce model standard on all models within a project

= Performance
Check under Code Generation Efficiency can help identify modeling
constructs that decrease the efficiency of the generated code.

= Accuracy
There is a check under Simulation Runtime Accuracy Diagnostics that
ensures data store memory read/write diagnostics are enabled

= Predictability

The Managing Library Links And Variants checks can find disabled library
links in your model, thus helping to ensure that your library reference blocks
behave as you expect

= Consistency
The Requirements Consistency Checking task helps ensure requirement
links match up with the requirement documents

®] £ Managing Data Store Memory Blocks

=3 Simulink Model File Integrity

I S-function Checks

] E3 units Incensistencies

W] 3 Modeling Signals and Parameters using Buses
(W] 53 Code Generation Efficiency

] C3 Modeling Single-Precision Systems

] £3 Migrating to Simplified Initialization mode
(] 53} Row-major code generation

(W] (5 Model Referencing

[= Managing Library Links And Variants

(] C3 Data Transfer Efficiency

®] 3 Modeling Standards for MISRA C:2012

m = Modeling Standards for Secure Coding (CERT C, CWE, ISC/IEC TS 17961)

I Upgrading to the Current Simulink Version
(@] £ Modeling Standards for DO-178C/D0-331
W] 3 Modeling Standards for DO-254

m] £ Modeling Standards for IEC 61508

W] 3 Modeling Standards for IEC 62304

®] 3 Modeling Standards for 150 26262

(W] £ Modeling Standards for 150 25119

(W] [Modeling Standards for EM 50128/EM 50657
] £33 Model Metrics

W] 3 Modeling Standards for MAB

@] 3 Modeling Standards for JMAAB

16

> R_D> M _» MV_» CG_» CV >

Model Architecture — Example of Model Standard

hisl_0025: Design min/max specification of input interfaces

ID: Title

Description

Motes

Rationale

Model Advisor Checks

hisl_0025: Design min/max specification of input interfaces

Provide design min/max information for root-level Inport blocks to specify the input interface ranges.
Specifying the range of Inport blocks on the root level enables additional capabilities[a]Examples include:
- Detection of overflows through simulation range checking.
- Code optimizations using Embedded Coder®.
- Design model verification using Simulink Design Verifier™.
- Fixed-point autoscaling using Fixed-Point Designer™.

- Specified design ranges are used by Embedded Coder to optimize the generated code. To use these
design ranges for optimization, select configuration parameter Optimize using the specified minimum

and maximum values. This configuration parameter is applicable only when the System target file is an
ERT-based target.

- Ranges for bus-type Inport blocks are specified with the bus elements of the defining bus object. Simulink
ignores range specifications provided directly at Inport blocks that are bus-type.

Support precise specification of the input interface.

Check for root Inports with missing range definitions (Simulink Check)

References

D0-331 Section MB.6.3.1.b "High-level requirements are accurate and consistent’
D0-331 Section MB_.6.3.2 b 'Low-level reguirements are accurate and consistent’

Referencing from DO-331 Standard

MATLAB EXIlPO

17

[> R » M _FMV» CG_» CV >

Model Static Analysis - Simulink Checks(Model Advisor) <°"°(™

= Improve the consistency, clarity, and readability of your models

MATLAB E

Model

- Identify model settings, blocks, and block parameters that affect simulation behavior or code generation

& Check usage of tunable parameters in blocks

|

Unit Delay4

link

Identify tunable parameters used to specify expressions, data type conversions, or indexing operations.

The following blocks have tunable parameters that specify expressions, data type conversions, or indexing operations:

« flight_mode/Unit Delay4

Recommended Action
Maodify the use of the tunable parameters in one of the following methods:

« Perform the calculations using Simulink basic blocks or precompute the values.
« Use the Selector block to extract array entries.
« Use the Data Type Conversion block to change data types.

18

MATLAB EXP

2R > v N ce) v
Model Static Analysis — Example of MAB Guideline contor

Model]
= Example of MAB guideline : db_0132: Transitions in flow charts
SubID b
In a flow chart, the condition shall be positioned on a horizontal transition line and the condition action shall be positioned on a vertical transition line.
Example — Correct Example — Incorrect
The condition is positioned on a horizontal transition line and the condition action is on a vertical transition line. The cendition is positioned on a vertical transition line and the condition action is on a horizental transition line.

@1 Ll .':-O él [condition1]
I 1

out = action(;

flow chart
—> Condition: Horizontal transition
- Action: Vertical transition

19

>R Y M SIMUDY CG_y cv > MATLAB E)

Model Static Analysis — Simulink Design Verifier oo

.. . . Model
= Objective : Design error detection

« Dead logic
® |ntegel’ or fIXGd-pOInt data OveI‘ﬂOW Simulink Design Verifier Results Summary: autopilot slc e

... ~
* Division by zero
Progress I
* Out of bound array access
Objectives processed B7/87
. . Valid 1
- Data store access violations Falsified 1
Elapsed time 019
« Specified block input range violations
| @ web Browser - simulink Design Verifier Repo - B X
mmeo -) o
" ewg \ o \ .3 | Location: file///D:/002.3:20MBD%:28Mathworks$429/00.%20eCody_Baseline/Design/Modeling/claws/sldv_output/autopilot_mode_slc/autopilot_mode_slc_reporthtml v D95|g n error dEtE_.nCIn CGWDIEtEd nD[mﬂ”y s
| Simulink De.._ % gave Report: off
Unsupported Blocks Simulink Design Verifier ran a partial check for dead logic. Consider enabling the
The following blocks are not supported by Simulink Design Verifier. They were abstracted during the analysis. This can lead Simulink Design Dead logic > Run exhaustive analysis' configuration option in order to perform an
Verifier to produce only partial results for parts of the model that depends on the output values of these blocks. exhaustiva anal Ve is.
1/87 objective is valid
rigonometry L !) . .
[et e e {87 objective is dead logic
I Chapter 3. Dead Logic
H Results:
I Simulink Design Verifier proved these decisions and conditions to be unreachable or dead logic. This can be a side effect of parameter I n
I configurations or minimum and maximum constraints specified on inputs. Simulink Design Verifier ran a partial check for dead logic. Consider . o
enabling the 'Dead logic > Run exhaustive analysis' configuration option in order to perform an exhaustive analysis. *0 pen filter viewer
1 I ool Eyo—— | # Highlight analysis results on model
Ype odel Item escription - - T ¥ —
- : F
I |l Decision |hdot_cmd_sle/alt2hdot_cmd/-500~6000|input > lower limit can only be true | Detailed analysis report I‘M] I‘i’
| L L » L T & 3 & & & 1 ¢ & & 3 S ppnp—p—
Chapter 4. Design Error Detection Objectives Status Data saved in- autopilol_mode_slc_sidvdata. mat _) _
in folder: D:¥002. MBO(Mathworks)¥W00. eCody_Baseline¥Design¥Modaling
Table of Contents WelawsWsldv_outputWautopilot_mode_sic
Objectives Valid
Objectives Valid
Type |Model Item Description é::)ly;is Time
123 Division by zero|hdot_emd_slc/alt?hdot_emd/SUMP_m7/Divide Division by zero 10
- W
< >

MATLAB

> R » M _SMV» CG » CV >)

Model Dynamics Analysis — Requirement Based Test Requirements

\.

N\

J

Workflow of Requirement Based Test

Model

1. Analysis requirement \

Identify requirement type (related to time or logical)
the model to be tested

Find input and output correspond to model (if enumeration type, find ..
mapped numerical variables) T

impester torque

Estimate expected output and set the baseline (pass/fail) i'ii ;j;mnw;l |
if not enough, find addition documents(ex: SDD) I ——
2. Make test harness model o:;"""m“ S —
Choose & make adequate test input to get (test sequence, excel, etc.) S:dn;m;nt —
Define inputs and assessments based on logical, temporal conditions
3. Run and evaluate test result via Test Manager ” 1" %)
Author, execute, manage test suites(test cases) .
Review, export, report | TestHaer‘1es‘s ‘Model

Collect model coverage

21

> R » M _SMV» CG » CV >

Model Dynamics Analysis — Model Coverage

-~ collect

oy
d
Test Case)))[Model j‘) coverage data

= Model coverage is indicator to confirm that
sufficient tests have been performed

= DO178C/331 require to specific model coverage
according to software level

= Measure model coverage, if not enough coverage

* Reanalysis the requirement and extract more testvector | wsccs

» ldentify derived requirement and extract test vector

* Check dead logic and modify the model

+ Execution Coverage (EC)

+ Decision Coverage (DC)

» Condition Coverage (CC)

» Modified Condition/Decision Coverage (MCDC)

(N
\. J
(N
Summary
Model Hierarchy/Complexity Test 1
Decision Condition AMCDC Execution _)
1. sldemo_clutch 16 73% v 100% 100% 100%
2.. .. Friction Model NA NA NA 100% ——
3. ... Enction Mode Logic 11 67% w— 100% 100% 100%
4 Break Apart Detection 1 100% ossss 100% ——— NA 100% e——
5 . .. Lockup Detection 1 100% 100% 100% 100%
6 Eriction Calc NA NA NA 100% ——
- .. Required Friction for Lockup 1 100% e 100% ——— NA 100% eo—
8.Lockup FSM 9 50% = 100% m——— NA 100% eo——
9.......Requisite Friction NA NA NA 100% e—
10. ... Locked 2 100% oo N4 NA 100% eo——
11. ... Unlocked 2 100% s NA NA 100% ——
’i slvnvdemo_cv_logic_cascade/Logic Cascade - Simulink prerelease use - m] X
File Edit View Display Diagram Simulation Analysis Code Help
— i 5]} == _ Ve N |
-~ | € 4 EEe-E-w d® P Iy ~ [100 | » @~ @3~
© |[’afsivnvdemo_cv_logic_cascade P [Pa|Logic Cascade -
&) Q
E3 3 o 1:1 1
=F a o 80 Data1
g 4 And_Block
= 1:0 > T 1:2
i b ® OR N
5 o OR > »(1
E— p—oF
c Or_Block
@ 2
B2 Data2
» @
Ready 171% FixedStepDiscrete

MATLAB I

22

> R > M _» MV _STEE > CV >

Code Generation

Consideration of code generation

Process and Scripts need to allow models developed through multiple
developers to generate code with the same code generation
configuration

Process need to apply the suitable code configuration when the target
has changed - multiple target

Even if the config file is changed by the developer's mistake, you need to
keep the reference file separately and keep the code-gen consistency to

MATLAB

\.

Model

Code Generation

7

connect the config file when executing the code generation script

Code
for TargetA

Code
L)
Model
Code Code
forTargetB for Target C

Simulink Coder
Embedded Coder

[woser | M| cose]

Multiple target

23

> R > M _» MV » CG P CU D>

MATLAB

Code Verification — Code Inspector

Simulink Code Inspector provides detailed model-to-
code and code-to-model traceability analysis. It
generates functional equivalence and traceability
reports that you can submit to certification authorities to
satisfy DO-178 software coding verification objectives

Code Inspection workflow

1.

2.

Code inspection compatibility check via model advisor
Generate code from model

Inspect code and review inspection results

Generate code inspection and traceability matrix

If failed, check model pattern and code generation config

slciderno_roll_step Yerified -

————————————— -
Model To Code Verification Results : Failed to verify I
= = | Ry e
Model abjects with status Verified : 40

Failad 1 ; Model objects with status Partially processed : 0
ailed to venfy) _
IModel objects with status Unable to process : 0

todel objects with status Failad to verify :

Function Status Details

slcidemo_roll_step Failed to verify

Temporary Variable Usage Results : Verified

Function Status Details

sleidemo_roll_step Warified

Code Verification Results : Failed to verify ,v

I
Function Interface Verification Results : Verified
Tra
Function Status Details \
slcidermo_roll_initialize Verified - \

Model
ce
Code

Lines of code with status Verfied ;

. o) Lines of code with status Partially processed : 0
slcidermo_roll_initialize “erified

-7 Lines of code with status Unable to process : 0O

Lines of code with status Failed to verify : 0

Lines of code with status Venfied . 21

Lines of code with status Parially processed : 0O
Lines of code with status Unable to process :

Lines of code with status Failed fo verify 5

sleiderno_roll_initialize “erified Function does not have any temporary variable declarations

Temporary variables with status Failed to verify © 0

Tempaorary variables with status Yerfied : B

=]

24

D> R D> M }} MV » CG >- MATLAB EXPP
Code Verification — Bug Finder and Code Prover contor

= Bug Finder checks compliance with coding rule standards such as MISRA C®, MISRA C++, AUTOSAR
C++14, CERT® C, CERT C++, and custom naming conventions. It generates reports consisting of bugs
found, code-rule violations, and code quality metrics, including cyclomatic complexity.

Code]

- Polyspace Code Prover™ proves the absence of overflow, divide-by-zero, out-of-bounds array access,
and certain other run-time errors in C and C++ source code. It produces results without requiring
program execution, code instrumentation, or test cases

Polyspace - Bug_Finder_Example C\Work\Documents\Polyspace_Workspace\Examples\R2017b\Bug_Finder_Example\Module_1\BF_Result static void pointer_arithmetic (void) {

File Reporting Metrics Tools Window Help G > Iabl dnt arcay (100
B3 & lgRunBugFinoerv B sop | Q _ -) : reen. reli e int *p = array;
[Results List & %% J %% Dachboard C:\Work\Documente\Polyspace. Workspace\Examples\R201 7b\Bua._Finder ExampleiModule 1\8F Rasw a5 [safe pom(er access int i;
All results v fk!iew Ev x}l :{) g Showing 2,286/2,286 v | Display: Top10 - defects and violations by Category v | Ve New g :
Family = Information < Detall = Fib Bug_Finder_Example version 1.0 (14/09/2017) - Author: - View ¢ for results 2 'Es i for (i = 0; < 100; i++4) |
< Defect 213 A | | Review Scope: All results - View 2l results in this scope £ | Red: faulty ‘p = 0; N
4 Concurrency ¢ New defect distribution by impact Code covel ¥
+ Data flow 15 Total: 213 defect(s) found red by ahalysls out of bounds error ptti variable V' (int32): [0 .. 99]
4 Dynamic memory 10 i U .
assignment of ‘I’ (int32): [1 .. 100
4 Good practice 15 High (62) ignme (int32): |]
4] Numerical 17 .
4 Programming 53 Gray dead s > 0) |
4) Resource management & Medium (90) unreachable code <« ire() > 0) |
+ Security 51 \ 5
@ Static memory 19 5;
+ Tainted data 19 S Low (61) {
+ Dir 1 The implementation 32
1 Dir 4 Code design 45 }
LA standard € snvionnont 4 Hew defect distribution by category (Top 10 only) }
52 Unused code 5 Total: 213 defect(s) found
+ S Identifiers 59 L lisble £ furcti
47 Uterals and constants 5 < = get bus status();
41 8 Dedarations and definitions 649 Vuherable pseudo-random number generator . -
59 Intalization 4 Taintad NULL ce non-rull-trminated string Purple: violation _
10 The essential type model 153 Returned vake of a ser\s!tweﬁxxlTﬁr:;l;mded MISRA-C/C++ or JSF++ if (i >=0) {
Missing reset of freed pointer - or v
EAL DO OpS comErmons A1 Write without a further read (e - 1);= 10;
+1 12 Expressions 3 Use of tainted pointer code rules 3
4113 Side effects 8 9 Use of setjmp/long)mp :
d3.34 Fontral chabnmiand Avmenrrinne €3 Use of erous standard function
< > e : ; v Rangedata '
& Project .. | () Results .. | 0§ Confiqu.. | (V] Result .. | [iJ Specifie..] Dashboard | (] Source | [Z] Output Summary | (& Run Log | tool tlp

25

> R > M > M > cc JIeuD MATLAR

SIL(Software In-the Loop) & PIL(Processor In-the Loop) | requirements
= Objective : equivalence tests(back-to-back tests) in different environments
= SIL : test generation production code with your environment or plant (Executable
model to verify a successful conversion of the model to code | Object Code |

= PIL : evaluate the behavior of a candidate algorithm on the target processor

MILS(Model In the o
Loop Simulation))

:Ln
J

- software

Sl - - Verify the processing output about
Aircraft Model

- Verify the Auto-Generated

Code(C/C++)from model

- Compare betweenModel and
Code(Equivalence)

SILS(Software In the
Loop Simulation)

- Actual CPU operationofthe code,
and the cross-compiler/linker
- setting on target CPU
Aircraft Model - Processingtime, memory usage
= evaluation

PILS(Processor In the
Loop Simulation)

Flight Control

26

MATLA

Tool Qualifications

Tools can assist software development to analyze and potentially improve system safety by the
automation of the activities performed and by predictably performing functions that may be prone
to human error.

However, an error in the tool may have a negative impact on software functionality if the tool
inadequately performs its intended functions. In order to avoid this risk and to ensure the integrity
of the tool functionality. the tool should be developed and verified using adequate processed.

|&] Certification Artifacts Explorer

File Edit Help

+0d€ B @
Artifacts
v DO Qualification Kit
b O-178C, DO-278A, DO-330, DO-254
S = Tool gqualification workflow
I=3 simulink Report Generator
© simuink Model Comparison 1. Provide certification authorities with a Tool Qualification Plan
v | Simulink Code Inspector
B o 2. Document Tool Operational Requirements
_\p qualkitdoSlciRunTests.m
ﬁq-mkjtd:-jciRunTestf-m_t_ 3. Verify that the tool satisfies Tool Operational Requirements using Test
B Procedure and Test Cases

5| qualkitdo_slci_run.mix
7] qualkitda_slci_tcp.dorx

B qualkitdo.sicitcp.pf 4. Provide traceability between model objects, generated code, and model
_\\ qualkitdo_slci_tor.docx requ”-ements

£=| qualkitdo_slci_torpdf

B et et 5. Provide certification authorities with Tool Qualification Results

27

Relation between DO Qualification Kit and Life Cycle Data

= To comply standard, need to prepare 23 artifacts

The blue artifacts directly related in Mathworks DO Qualification Kit with MBD process

MATLAB

ﬂlanning Process

MB11.1 Plan for Software Aspects of Certification(PSAC)
MB11.2 Software Development Plan

MB11.3 Software Verification Plan

MB11.4 Software Configuration Management Plan
MB11.5 Software Quality Assurance Plan

\ (Development Process

MB11.9 Software Requirements Data
MB11.10 Software Design Description
MB11.11 Source Code

MB11.12 Executable Object Code

* MB11.22 Parameter Data Item File

MB11.7,8 Software Requirements, Design and Code Standards + MB11.21 Trace Data

MB11.23 Software Model Standard(Only MBD)

\

o

ﬂ/erification Process

MB11.13 Software Verification Cases and Procedures
MB11.14 Software Verification Results

MB11.17 Problem Reports

MB11.21 Trace Data

- Software Quality Assurance Process

MB11.19 SQA Records

- SW Configuration Management Process

MB11.18 Software Configuration Management Records
MB11.17 Problem Reports

MB11.16 Software Configuration Index

MB11.15 Software Life Cycle Environment Configuration Index

- Certification Liaison Process

+ Software Accomplishments Summary
« MB11.1 PSAC
« MB11.16 Software Configuration Index

AN

28

MATI

Strategy of Continuous Integration/Deployment

= Need to setup strategy about applying CI/CD

= ot PQE’.
- all process are not able to be accomplished at once S % %
« considering team organization situation (ex: after code gen.) z 5 .
g e 8 5
* how much automate and which process have to review manually N
-D-- .: o {-..'. VERIFY
- - L J \ J g .
= Jenkins call MATLAB script to execute each process () Qe 3
PROCESS CODE |DESCRIPTION TRIGGERD BY ARTIFACTS DEPENDENCY/ERROR COUNTEF RETRUN TO REMARKS
REQ DEV A0
SL MODEL DEV BO |Model Referenced— — — — = — — — — — — — — — — = = = = = = - — — — — — === === === == 1
B1 |Harness Model, Test Vector 1
f analysis report |
:STATIC ANALYSIS —C0. Jddeaddagic-run-time eor. -Madel pushed-ta-git-repositary (derivedrequitements)m —m — = = = = = = ——— — - A.O,.Bm..l ______________ !
: model guidelines analysis report | I |
i C1 |(include SLCI compatibility) CO-PASS (model modification) guidelines rule configuration 1BO Co I
analysis report I B B T T
DYNAMIC ANALYSI
¢ SIS DO |Requirement based Test C1-PASS (pass/fail, coverage) model, harness and test vector A0 BO B1* CO C1 B1 Only, if missing coverage
model configuration and
CODE GENERATION
EO]Code Generation DO-PASS generated code parameters BO C1
FO]Code Inspection EO-PASS inspection report BO CO C1 DO EO
analysis report
F1 Equivalance Test (SIL) FO-PASS (code coverage) BO Co* C1* DO* EO* (*): Not required, but recommended
CODE VERIFICATION - Equivalance Test (PIL) — —
analysis repo
F2 [Polyspace Bug Finder F1-PASS (MISRA, defects, CERT-C) BO* Co C1 DO EO (*): justification: comments at models
analysis report red, green: model modification
F3 [Polyspace Code Prover F2-PASS (run time errors: g/o/r/gr) BO* CO C1 DO EO FO F1 (*): orange, green: justification

29

MATLAB B>

Thank you

o/)\ MathWorks:

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

	Slide 0
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

