
0

딥러닝을 위해 MATLAB과 TensorFlow/PyTorch 함께 사용하기

김종남 부장, 매스웍스코리아



11

Interoperability has an impact across different vertical applications

Controls/ MBD workflows: models imported from OSS 

are a part of a bigger system 
Audio/ Signal Processing: (call dataprocessing

in MATLAB from Python)



22

Model Exchange
MATLAB-Python 

Coexecution

ONNX 

Converter

TensorFlow 

Converter

Python 

Interface

MATLAB 

Engine

Ways to Interoperate with TensorFlow and PyTorch



33

MATLAB Neural Network Model

Visualization/ 

Debugging

Analyze Network/ 

Retrain
AI System Design

importONNXNetwok/importTensorFlowNetwork

ONNX or TensorFlow Model

Custom Training Loop

Automatic Differentiation

Weight Sharing

Reinforcement Learning

Automated Driving

Control Systems

(Automatic) Labeling
Code Generation and 

Compiler

Java .NET

MATLAB 
Production 

Server

Standalone

Application

Image Labeling

Video Labeling

Signal/ Audio Labeling

LiDar Point Cloud Labeling

Model 

ExchangeModel Import Workflow



44

1

2

3

Data Preparation AI Modeling

Existing Data 

Processing Pipelines
AI Modeling

AI ModelingSystem Integration

Codegen & 

Compiler

Codegen & 

Compiler

Importers

CoexecutionMATLAB-Python Co-execution Workflows



55

Model Exchange and Complete AI Workflow



66

Model Exchange
MATLAB-Python 

Coexecution

ONNX 

Converter

TensorFlow 

Converter

Python 

Interface

MATLAB 

Engine

Ways to Interoperate with TensorFlow and PyTorch - TensorFlow 

Converter



7

▪ Step1: Train model in TensorFlow and save the model

▪ Step2: Import model into MATLAB and analyze architecture and validate the results

▪ Step3: Include into a Simulink model for desktop simulation

▪ Step4: Generate CUDA code from imported TensorFlow Model

ResponsePredictors

Case 1- Example: Battery Management Demo



88

Step1: Train model in TensorFlow and save the model



99

Step 2: Import and analyze architecture, and validate the results



1010

Step3: Include into a Simulink model for desktop simulation



1111

Step4: Generate CUDA code from imported TensorFlow Model



1212

Challenge
Automate visual inspection of sheet-shaped products and 

ensure ease of use and maintenance of the deployed 

model

Solution

Import the trained TensorFlow-Keras model into MATLAB 

using an importer, create a user interface, and deploy it in 

the field as an application

Key Outcomes
▪ Reduced visual inspection time by 80%

▪ Effectively used models trained in other frameworks

▪ Deployed application with a user interface that anyone 

can use

“MATLAB solved our problems on the field 

implementation and saved development time. That 

led to highly accurate development.”

- Shintaro Maekawa, Mitsui Chemicals, Inc.

Model development with Python (TensorFlow-Keras) 

and efficient onsite implementation of models with 

MATLAB.

Link to case study

Mitsui Chemicals Deploys AI and Automation Systems with 

TensorFlow and MATLAB

https://www.mathworks.com/company/user_stories/case-studies/mitsui-chemicals-deploys-ai-and-automation-systems-with-tensor-flow-and-matlab.html


1313

Model Exchange
MATLAB-Python 

Coexecution

ONNX 

Converter

TensorFlow 

Converter
Python 

Interface

MATLAB 

Engine

Ways to Interoperate with TensorFlow and PyTorch



1414

Ways to Interoperate with TensorFlow and PyTorch



1515

ONNX Exporting and Importing



1616

Use MATLAB and Python in model training



1717

Model Exchange
MATLAB-Python 

Coexecution

ONNX 

Converter

TensorFlow 

Converter

Python 

Interface

MATLAB 

Engine

Ways to Interoperate with TensorFlow and PyTorch



1818

Calling Python from MATLAB Calling MATLAB from Python

Already working in Python, and:

• Want to reuse existing MATLAB code

• Need functionality available in MATLAB

• Want to collaborate with MATLAB users

Already working in MATLAB, and:

• Want to reuse existing Python code

• Need functionality that is only available in Python

Python Interface
MATLAB Engine

Why Co-execution?



1919

Model Exchange
MATLAB-Python 

Coexecution

ONNX 

Converter

TensorFlow 

Converter

Python 

Interface

MATLAB 

Engine

Ways to Interoperate with TensorFlow and PyTorch



2020

Example: Speech Command Recognition – Train in PyTorch, 

call data processing in MATLAB

• Step 1: Setting up MATLAB engine in Python

• Step 2: Setting up functions to call MATLAB from 

PyTorch

• Step 3: Preparing data and designing network in 

PyTorch

• Step 4: Calling MATLAB preprocessing functions 

from PyTorch training loop

• Step 5: Exporting trained network to ONNX and 

import ONNX model in MATLAB



2121

Example Workflow

Data ProcessingDesign and train neural networks
Retrain/Inference

Generate Code

Visualize

Simulink Integration

MATLAB Engine

importONNXNetwork



2222

Example Workflow

Data ProcessingDesign and train neural networks

MATLAB Engine



2323

•Calling MATLAB from Python

Install the Engine API

Step 1: Setting up MATLAB engine in Python

https://www.mathworks.com/help/matlab/matlab-engine-for-python.html


2424

MATLAB 

EngineStep 2: Setting up functions to call MATLAB from PyTorch



2525

MATLAB 

Engine

Step 2: Setting up functions to call MATLAB from PyTorch



2626

MATLAB 

Engine

Similar to Datastores in MATLAB

Initiate a handle to prepare the data that will be read in the training loop

Design the neural network architecture

Step 3: Preparing data and designing network in PyTorch



2727

MATLAB 

Engine

Custom training loop in PyTorch

Step 4: Calling MATLAB preprocessing functions from PyTorch

training loop



2828

▪ In PyTorch, export model to onnx

▪ Import the model to MATLAB with importONNXNetwork

MATLAB 

Engine

Step 5: Exporting trained network to ONNX and import ONNX model 

in MATLAB



2929

Model Exchange
MATLAB-Python 

Coexecution

ONNX 

Converter

TensorFlow 

Converter

Python 

Interface

MATLAB 

Engine

Ways to Interoperate with TensorFlow and PyTorch



3030

Using TensorFlow Network Design Inside the MATLAB Script 



3131

Using TensorFlow Network Design Inside the MATLAB Script 



3232

Using TensorFlow Network Design Inside the MATLAB Script 



33

Best for AI model evolution, codegen, and system integration

▪ Import model from third-party framework to Deep Learning Toolbox

▪ Use MATLAB’s data labeling/ processing/ code generation and compiler 

pipelines

▪ Integrate model into Simulink using Deep Learning Toolbox blocks or 

MATLAB Function block 

▪ Export modified model to third-party framework if needed

Best for encapsulation and reuse of Python code in MATLAB/ Simulink

▪ Use existing data pipelines in Python and train and perform experiment 

management in MATLAB using apps

▪ Use TensorFlow/ PyTorch for training with MATLAB’s data labeling/ processing 

pipelines

▪ Create Python API in separate MATLAB function in Simulink

▪ Use a MATLAB Function block in Simulink to call Python subroutines and models

Co-execution

Used when 

• working with Deep Learning models or other Matlab/ Python code

• pretrained models cannot be directly imported into MATLAB

Model Exchange

Used when working mainly with Deep Learning models
(R2017b or later)

Summary: MATLAB with TensorFlow & PyTorch



34

Thank you

© 2022 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks 

for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.


