Simscape를 이용한 멀티도메인 물리 모델링

이종일 부장, 매스웍스코리아

Can you analyze how the system behaves before building any physical prototypes?

How do you model the electromechanical and multibody components?

How to analyze the system behaves before building any physical prototypes?

Solution :

Simscape & Simscape Multibody

Benefit :

- Perform multiple systems such as mechanical, electrical system
- Visualize to understand system behavior
- Evaluate performance criteria to decide system requirements

How to analyze the system behaves before building any physical prototypes?

🕞 | 🏭 🖈 | 🗤 - | Q - 🖾 - 🕨

How to analyze the system behaves before building any physical prototypes?

- Simscape Overview
- Demos
- Applications
- Key Takeaways

Simscape Overview

Multidomain physical systems within the Simulink environment

Mechanical (translation and rotation)

Custom

Simscape Overview

Equations derived automatically

Assemble schematics that simulate

- With Simscape you can:
 - Test without hardware prototypes
 - Optimize system-level performance
 - Design control systems and logic
 - Refine requirements for system

Input/Output Block Diagram

Simscape

How to build walking robot?

Walking Robot

- Start from Simulink
 - Use Simulink in toolstrip
 - Command as "smnew"
- Clean up canvas
 - Delete unused block
 - Delete ref. descriptions
- Insert block to build model
 - Use ref. image for design
 - Align blocks from format tab

- Parameterize blocks
 - Update dimensions
 [1 1 1] → [1 0.1 0.1]
- Update models
 - Refresh model data (F5)
 - Change View Convention

Demos – Design Inverted Pendulum

Pendulum

MATLAB EXPO

Define Coordinate Frames

- Add new coordinate frame to create joint at certain features (faces, edges, ETC)

- Add new frame to link joint
 - Select surface to add new frame using "Based on geometric feature"
 - Add two new frame at the end of block
 - Rename of new frame as "Base" and "End"
- Update models
 - Refresh model data (F5)

- Connect blocks with joint
 - Resize block to connect model
 - Insert "Revolute Joint" and connect block between Brick Solid block and World Coordinate
- Update models
 - Refresh model data (F5)
 - Change view convention

- Run simulation
 - Modify coordination of gravity
 [0 0 9.81] → [0 9.81 0]
- Extend model complexity
 - Copy & Paste your model to extend application
 - Physical network model can be utilized easily without delivering equation

Demos – Estimate Motor Parameters

Configure the Model to Balance Model Fidelity and Simulation Speed

In Summary, Simscape Electrical Lets You Model Electrical Systems with Varying Level of Detail

Compile-time -

Compile-time •

Compile-time -

Compile-time -

Compile-time -

Compile-time -

Apply

Help

Х

Motor

Parameterization of Motor Modeling Using Simscape Electrical Select a predefined parameterization

ermanent Magnet Synchronous Ma	chine (composite three-phase ports)		
nis block represents a permanent m	nagnet synchronous machine with sinusoidal flux dis	tribution.	
ght-click on the block and select Si	mscape block choices to access variant implementat	tions of this block.	
elect a predefined parameterization			
ettings			
Main Mechanical Variables			
Winding type:	When wound		_
winding type:	wye-wound		•
Modeling fidelity:	Constant Ld, Lq, and PM		•
Number of pole pairs:	P		Compile-time 🔻
Permanent magnet flux linkage parameterization:	Specify flux linkage		•
Permanent magnet flux linkage:	psim	Wb ~	Compile-time 🔻
Stator parameterization:	Specify Ld, Lq, and L0		•
Stator d-axis inductance, Ld:	Ld	H ~	Compile-time 🔻
Stator q-axis inductance, Lq:	Lq	H ~	Compile-time 🔻
Stator zero-sequence inductance, L0:	LO	H v	Compile-time 🔻
Stator resistance per phase, Rs:	Rs	Ohm ~	Compile-time 🔻
Zero sequence:	Include		•
Rotor angle definition:	Angle between the a-phase magnetic axis and the	q-axis	•
5			

Block Parameterization	Manager: PN	ISM				-		>
	(
Select manufacturer	ABB_BAL	DOR						
Select part	BSM132C	_8200AA						,
Attribute	v	alue						
Manufacturer	A	BB_BALDOR						
Part number	E	SM132C-8200AA						
Part series								
Web link	h	ttps://www.baldor.c	com/brands/bal	dor-reliance	/products/mot	ors/servo-mot	ors/ac-br	ushl
Part type	S	PMSM, 325Vdc, 2	3.373kW, 1800)rpm,80A				
Parameterization date	1	8-Jun-2020						
Parameterization note	F	redefined paramet	terizations of S	imscape cor	nponents use	available data	a sources	for
Part data file location	E	lectromechanical\	Permanent_Ma	gnet\PMSM	ABB_BALDO	R\BSM132C_	8200AA.	×ml
4								
					Update b	llock with sele	ected part	t
		R" C"			Compare bloc	k settings with	n selecte	d pa
PN	ISM mod	lei						
ABB BALDO	R:BSM1	32C-8200AA						

Parameterization of Motor Modeling Using Simscape Electrical Nonlinear PMSM Model

- Define PMSM behavior using d- and q-axis flux linkage
- Parameterization option is directly compatible with Maxwell, JMAG and Motor-CAD data
 - With a few changes to text file,
 MATLAB variables that match block
 parametrization can be generated

Demos – Estimate Motor Parameters

Motor

- ***
- Motor modeling
 - Simscape Electrical supports multiple type of motor and driver
- Parameterize components
 - Simulink Design
 Optimization support
 parameter estimation

Demos – Estimate Motor Parameters

Motor

- Tip for fast simulation
 - Use Fast Restart
 - Utilize Parallel Computing toolbox
- Estimate parameters
 - Adapt experiments data to estimate components parameters using Simulink Design Optimization Toolbox

Demos – Estimate Motor Parameters Select Parameters and Set Ranges

- Select the motor parameters to tune
 - Mechanical Characteristics : DC_Motor_B, DC_Motor_J
 - Electrical Characteristics : DC_Motor_L, DC_Motor_R, DC_Motor_K
- Set the valid range for each value

Motor

MATLAB EXPO

S	Select model variables					
	Filter by	variable nam	e			
	•	Variable	Current val			
	\checkmark	DC_Motor_B	0.5	dcmotor		
	\checkmark	DC_Motor_J	0.01	dcmotor		
	\checkmark	DC_Motor_K	0.02	DC Mot		
	\checkmark	DC_Motor_L	0.01	dcmotor		
	\checkmark	DC_Motor_R	3	dcmotor		

Specify expression indexing if necessary (e.

Demos – Creating custom Simscape components

Creating custom Simscape components Example: McKibben air muscle

Steps:

- 1. Write out defining equations
- 2. Find starting point in Simscape foundation library
- Incrementally add functionality, testing as you go

McKibben air muscle

Creating custom Simscape components Step 1: Write out equations

- L_u = Un-stretched length
- L_s = Additional stretch due to force, F

Assumptions:

- Volume is approximately constant
- Stretch force is proportional to L_s

Equations:

- $L = L_u(p) + L_s$
- $F = k \times L_s$
- pV = nRT

Creating custom Simscape components Step 2: Find starting point from foundation library

- Has equation of state
- Need to add mechanical ports & equations

This t This t the contained the component constant_volume_chamber < foundation.gas.one_port_vertical 2 % Constant Volume Chamber (G) Port A 3 % This block models mass and energy storage in a gas network. The chamber 4 % contains a constant volume of gas. The pressure and temperature evolve 5 % based on the compressibility and thermal capacity of this gas volume. 6 % Source 7 % Port A is the gas conserving port associated with the chamber inlet. Port 8 % H is the thermal conserving port associated with the temperature of the 9 % gas inside the chamber. 10 Para 11 % Copyright 2016 The MathWorks, Inc. 12 13 nodes 14 H = foundation.thermal.thermal; % H:top Croc 15 end 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21	Const	ED		0	9
<pre>the content constant_volume_chamber < foundation.gas.one_port_vertical % Constant Volume Chamber (G) Port A % This block models mass and energy storage in a gas network. The chamber % contains a constant volume of gas. The pressure and temperature evolve % based on the compressibility and thermal capacity of this gas volume. % Sourc % Port A is the gas conserving port associated with the chamber inlet. Port % gas inside the chamber. Para 1 * Copyright 2016 The MathWorks, Inc. Para 1 * Copyright 2016 The MathWorks, Inc. Cros s end port parameters volume = {0.001, 'm^3'}; % Chamber volume area_A = {0.01, 'm^2'}; % Cross-sectional area at port A end 21 </pre>	This t conta	New	Image: Save with the sector w	4	
<pre>2 % Constant Volume Chamber (G) Port A 3 % This block models mass and energy storage in a gas network. The chamber 4 % contains a constant volume of gas. The pressure and temperature evolve 5 % based on the compressibility and thermal capacity of this gas volume. 6 % Sourc 7 % Port A is the gas conserving port associated with the chamber inlet. Port 8 % H is the thermal conserving port associated with the temperature of the 8 % H is the thermal conserving port associated with the temperature of the 8 % H is the thermal conserving port associated with the temperature of the 8 % Gopyright 2016 The MathWorks, Inc. 10 Para 11 % Copyright 2016 The MathWorks, Inc. 12 Cha 14 H = foundation.thermal.thermal; % H:top 15 end 16 port 16 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21 21 21 21 21 21 21 21 21 21</pre>	the co	1	<pre>component constant_volume_chamber < foundation.gas.one_port_vertical</pre>	1	
<pre>Port A 3 % This block models mass and energy storage in a gas network. The chamber therm 4 % contains a constant volume of gas. The pressure and temperature evolve 8 based on the compressibility and thermal capacity of this gas volume. 6 % Sourc 7 % Port A is the gas conserving port associated with the chamber inlet. Port 8 % H is the thermal conserving port associated with the temperature of the 8 gas inside the chamber. 10 Para 11 % Copyright 2016 The MathWorks, Inc. 12 Cha 14 H = foundation.thermal.thermal; % H:top Cros 15 end 16 port 16 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21 </pre>		2	% Constant Volume Chamber (G)		
<pre>therm 4 % contains a constant volume of gas. The pressure and temperature evolve % based on the compressibility and thermal capacity of this gas volume. % Sourc 7 % Port A is the gas conserving port associated with the chamber inlet. Port % H is the thermal conserving port associated with the temperature of the % gas inside the chamber. Para 11 % Copyright 2016 The MathWorks, Inc. Para 11 % Copyright 2016 The MathWorks, Inc. Para 11 % Copyright 2016 The MathWorks, Inc. Para 12 Cha 14 H = foundation.thermal.thermal; % H:top Cros 15 end 16 port 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21 </pre>	Port A	3	% This block models mass and energy storage in a gas network. The chamber		
<pre>cham 6 % based on the compressibility and thermal capacity of this gas volume. 6 % Sourc 7 % Port A is the gas conserving port associated with the chamber inlet. Port 8 % H is the thermal conserving port associated with the temperature of the 9 % gas inside the chamber. Parc 11 % Copyright 2016 The MathWorks, Inc. Parc 12 nodes 14 H = foundation.thermal.thermal; % H:top Cros 15 end 16 port 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21 </pre>	therm	4	% contains a constant volume of gas. The pressure and temperature evolve		
Source 7 % Port A is the gas conserving port associated with the chamber inlet. Port % H is the thermal conserving port associated with the temperature of the % gas inside the chamber. Pare 11 % Copyright 2016 The MathWorks, Inc. Pare 13 nodes H = foundation.thermal.thermal; % H:top Cros 15 end 16 port 16 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end	cham	5	* based on the compressibility and thermal capacity of this gas volume.		
Source 7 % Fort A is the gas conserving port associated with the chamber linet. Fort 8 % H is the thermal conserving port associated with the temperature of the 9 % gas inside the chamber. 10 Para 11 % Copyright 2016 The MathWorks, Inc. 12 13 nodes 14 H = foundation.thermal.thermal; % H:top 15 end 16 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21	C	6	8 Port A is the sea concerning port essentiated with the chember inlet. Port		
Settir 9 8 gas inside the chamber. 10 Para 11 8 Copyright 2016 The MathWorks, Inc. 12 Cha 13 14 H = foundation.thermal.thermal; % H:top Cros 15 end 16 port 16 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21	Sourc	0	* Fort A is the gas conserving port associated with the temperature of the		
<pre>Setur 10 Para 11 % Copyright 2016 The MathWorks, Inc. 12 Cha 13 nodes 14 H = foundation.thermal.thermal; % H:top Cros 15 end 16 port 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21</pre>	Cottir	9	* as inside the chamber.		
<pre>Para 11 % Copyright 2016 The MathWorks, Inc. 12 Cha 13 nodes 14 H = foundation.thermal.thermal; % H:top Cros 15 end 16 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21</pre>	Settin	10			
<pre>12 13 nodes 14 H = foundation.thermal.thermal; % H:top 15 end 16 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21</pre>	Para	11	% Copyright 2016 The MathWorks, Inc.		
Cha 13 nodes 14 H = foundation.thermal: % H:top 15 end 16 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21	rarc	12	· · · · · · · · · · · · · · · · · · ·		
<pre>Crod 14 H = foundation.thermal; % H:top Cros 15 end 16 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21</pre>	Cha	13	nodes		
Cros 15 end 16 16 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21	Cha	14	<pre>H = foundation.thermal.thermal; % H:top</pre>		
<pre>16 port 16 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21 </pre>	Cros	15	end		
<pre>point 17 parameters 18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21 </pre>	port	16			
<pre>18 volume = {0.001, 'm^3'}; % Chamber volume 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21 </pre>	port	17	parameters		
<pre> 19 area_A = {0.01, 'm^2'}; % Cross-sectional area at port A 20 end 21 </pre>		18	volume = $\{0.001, \frac{m^3}{3}; \$ Chamber volume		
20 end 21 <		19	<pre>area_A = {0.01, 'm^2'}; % Cross-sectional area at port A</pre>		
21		20	end		
		21 <	>	1	

Creating custom Simscape components Step 3: Incrementally add functionality

Two additional new equations

$$L = L_u(p) + L_s \longrightarrow 152 \quad L == Ls + Lu;$$

$$F = k \times L_s \longrightarrow 153 \quad \text{force} == K * Ls;$$

149 Lu = tablelookup(pVec,LuVec,p_chamber,

Creating custom Simscape components Step 3: Incrementally add functionality

Creating custom Simscape components Step 4: Build library and run test model

_

Demos - Quadruped Robot

Demos - Quadruped Robot

- Simulate models
 - Identify system behavior
 - Design controller
- Analyze physical system
 - Evaluate overall system requirements
 - Confirm system capacity such as battery power, motor capacity ETC

Simscape works in a variety of applications

- Plant and control
- Multidomain
 - Electrical
 - Mechanical
 - Thermal
 - Fluid

Demos - Quadruped Robot

Walking Robot

1. Can you analyze how the system behaves before building any physical prototypes?

2. How do you model the electromechanical and multibody components?

One Approach Could Be...

Any Alternatives?

×

Quadruped Robot Locomotion Using Reinforcement Learning

Train quadruped robot to walk with **DDPG** agent

- Quadruped robot modeled in Simscape Multibody with contact forces
- Policy takes in 44 observations and outputs 8 torque values

aining Progress (29-May-20	19 10:58:19)
	Training Clanned
	Inaming Stopped
pisode Information	
Episode Number 5820	
Episode Reward 193.5664	
Episode Steps 400	
Episode Q0 71.9101	
Total Number of Steps 1298719	
Total Number of Steps 1298719	
Total Number of Steps 1298719 Average Results	
Total Number of Steps 1298719 Average Results Average Reward 192.9243	
Total Number of Steps 1298719 Average Results Average Reward 192.9243 Average Steps 396.88	
Total Number of Steps 1298719 Average Results Average Reward 192.9243 Average Steps 396.88 Window Length for Averaging 25	0
Total Number of Steps 1298719 Average Results Average Reward 192.9243 Average Steps 396.88 Window Length for Averaging 25	0
Total Number of Steps 1298719 Average Results Average Reward 192.9243 Average Steps 396.88 Window Length for Averaging 25 Training Options	0
Total Number of Steps 1298719 Average Results Average Reward 192.9243 Average Steps 396.88 Window Length for Averaging 25 Training Options Hardware Resources for Actor and	0 I Critic cpu cpu
Total Number of Steps 1298719 Average Results Average Reward 192.9243 Average Steps 396.88 Window Length for Averaging 25 Training Options Hardware Resources for Actor and Learn Rates for Actor and Critic (1)	0 I Critic cpu cpu 0.0001 0.001
Total Number of Steps 1298719 Average Results Average Reward 192.9243 Average Steps 396.88 Window Length for Averaging 25 Training Options Hardware Resources for Actor and Learn Rates for Actor and Critic (Maximum Number of Episodes 2	0 Critic cpu cpu 0.0001 0.001 0000

Final Results

Training Stopped by Stop Training Button Training Stopped at Episode 5821 Elapsed Time 1.9458e+05 sec

Copyright 2019 The MathWorks, Inc.

Simscape works in a variety of applications

Robotics

Drivelines

Renewable Energy

Actuation

Hybrid Vehicles

Volvo Construction Equipment Streamlines Product Development with a Real-Time, Human-in-the-Loop Simulator

Challenge

Evaluate design concepts and parameter values for construction equipment before building physical prototypes

Solution

Use Simulink, Simscape, and Simulink Real-Time to model hydraulic, mechanical, and engine systems and perform real-time, operator-in-theloop simulations

Results

- Number of prototypes reduced
- Issues in the field resolved faster
- Controller tuned in simulation

Volvo Construction Equipment's real-time, human-in-the-loop simulator.

"It was technically impossible for us to build a full-scale hydraulic
system model to run in real time without Simulink, Simscape,
and Simulink Real-Time. Our simulator enables us to test new
concepts for construction equipment, tune parameters, reduce
lead times, and minimize issues in the field."
- Jay Yong Lee, Volvo Construction Equipment

Krones Develops Package-Handling Robot Digital Twin

Challenge

Increase the performance of an automated beveragepackaging system by incorporating a dynamic tripod robot into the design

Solution

Use Simulink and Simscape Multibody to create an accurate digital twin that supports design optimization, fault testing, and predictive maintenance

Results

- Robot performance increased
- Product development time shortened
- Testing time significantly reduced

The Krones Robobox T-GM package-handling robot.

"Simulations of the digital twin in Simulink enabled us to obtain data and insights that would be either impossible to get via hardware tests or simply too costly and time-consuming. Visualizing forces and moments helped us to understand the effects of individual components on a highly dynamic robot." - Benedikt Böttcher, Krones

Key Takeaways

- Simscape helps you create models of multidomain systems in Simulink
- Explore design of physical systems, to support controller development, more...
- Simscape is widely used for many applications
- Resources are available to help you get started and succeed

Thank you

© 2022 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.