MATLAB/Simulink 환경에서 그린 수소 공급망에 대한 솔루션

강효석 부장/Ph.D., 매스웍스코리아

Enabling Green Hydrogen – Supply Chain

Enabling Green Hydrogen – Motivation

Advantages

- 100% sustainable
- storable
- versatile
- transportable

"Green hydrogen: an alternative that reduces emissions and cares for our planet" <u>Iberdrola > Sustainability > Green Hydrogen</u>

Deltas

- high energy consumption
- high cost
- safety (managing H2)

Enabling Green Hydrogen – Key Takeaways

- Assert feasibility
 - Techno-economic analyses
 - Proven concept
- Secure sustainable and robust operation
 - Design Automation
 - Optimization

Stage 1. Green Hydrogen Production (from renewable energy to gas)

Enabling Green Hydrogen - Challenges

Production (Micro-grid)

System Level

Component design

- electrolyzer
- energy storage
- power converter unit
- generator

Asset digitalization

- anomaly detection
- lifetime estimation
- prognostics development

Plant design

- concept evaluation
- physical requirements
- energy balance

High-level algorithmic design

- supervisory logic
- setpoint definition

Enabling Green Hydrogen – Model Fidelity

What Is a Quasi-Steady Simulation and Why Is It Important for Techno-Economic Applications?

Low fidelity

- Techno-economic assessments are typically conducted across long durations of time at regular time-intervals ranging from 1 minute to 1 hour (1 hour intervals across 1 year is common – a so called 8760 simulation)
- Techno-economic assessments typically do not care about system dynamics but do care about steady-state operational conditions at each time-interval.
- A quasi-steady simulation assumes that, at each time-step, the dynamics of a system are fast enough that they have reached steady-state. It is primarily an algebraic, timebased simulation.
- A quasi-steady simulation therefore provides a foundation for techno-economic assessments.

Reduced Order Modeling

- To incorporate a physical component and its functional control response into a quasisteady simulation, we need to remove the dynamics associated with moving from one operating point to another.
- One way of doing this with an electrical component, is to create a Thevenin Equivalent model, with Look-Up Tables (LUTs) that define source voltage and source impedance for a given power level.
- We can also consider the response of a power converter by creating a LUT that maps duty-cycle to voltage level.

Enabling Green Hydrogen – TEA (Data Re-use)

Low fidelity

The irradiance data is 8760 TMY3 from National Renewable Energy Laboratory.

Electricity price data is one day of data from system operators.

Enabling Green Hydrogen – TEA (Outcome)

H₂ production: Highest grid cost & Lowest solar resource

Elapsed time is 510.209014 seconds.

Lowest grid cost is USD 6761.6456 at Phoenix Sky Harbor Intl AP Highest solar resource is 497.1227MWh at Daggett Barstow-Daggett AP

Highest grid cost is USD 13217.5585 at Quillayute State Airport lowest solar resource is 291.2997MWh at Quillayute State Airport 242 years in 500 secondsi.e.1 year every 2 seconds

Reduced Parallel Order Models + Computing Agile Insights (decision-making)

Low fidelity

Enabling Green Hydrogen – System Performance

- \circ expected H₂ production & water consumption
- o suitable control strategy (conditions, use of physical assets)
- energy storage (dimensioning, expected duty regime)
- o planning of operations (collect replace maintain)

Ready

15

MATLAB EXPO

Enabling Green Hydrogen – System Performance								Medium fidelity
Wind_DC_Battery_Complete/Battery/I	Dynamic - Simulink							- 0 ×
SIMULATION DEBUG	MODELING	FORMAT	APPS	SIMSCAPE BLOCK				 ₽, - ? - ⊙
 Dynamic Wind_DC_Battery_Complete 	Battery 🕨 🔁 Dyr	namic						[2005] •
Block Parameters: Battery1					×			
series internal resistance and a co models the battery as a series interval V = Vnom*SOC/(1-beta*(1-SOC) where SOC is the state of charge boint [AH1,V1]. Settings Main Dynamics Fade	ernal resistance plus	s a charge-depend	lent voltage so	ource defined by:			1 p	
Nominal voltage, Vnom:	Battery.Wind.Un			V	✓ Compile-time •			
Current directionality:	Disabled				*			
Internal resistance:	Battery.Wind.Rs			Ohm	✓ Compile-time •	E la		
Battery charge capacity:	Finite				÷			
Ampere-hour rating:	Battery.Wind.Qn			A*hr	✓ Compile-time •			
Voltage V1 when charge is AH1:	Battery.Wind.U1			V	✓ Compile-time •			
Charge AH1 when no-load voltage is V1:	Battery.Wind.Q1			A*hr	✓ Compile-time •	<	2	
Colf discharges	Disabled				÷		m	
Self-discharge:								

16

Ready

17

MATLAB EXPO

18

Sample based T=86400.000

MATLAB EXPO

Ready

MATLAB EXPO Enabling Green Hydrogen – System Performance **Medium** fidelity Voltage-based Control **Energy-based Control** Scope Scope File Tools View Simulation Help File Tools View Simulation Help 🖲 🐎 · Q, · 🔂 · 🗲 🎑 · 3 · Q · B · # 2. Current IA Hydrogen Mass [kg 46kg Current [A Hydrogen Mass [kg 38kg Energy [kWh] Voltage [V] /oltage [\ Energy [kWh Electrolyze 🔺 Battery 🔺 Battery Simulation Help Simulation Help 🐎 · 🔍 · 🐼 · 🐴 | 🎭 · 🝳 · 🛃 · 🖨 State-of-Charge [%] State-of-Charge [%] 65% 51%

Recap of Green Hydrogen Production

- Assert feasibility
 - Techno-economic analyses
 - Proven concept

Stage 2. Hydrogen Distribution (from tank to consumers)

Enabling Green Hydrogen – Challenges H2 Handling and Usage

(Stage 2) Transfer (tank-to-cell)

- Optimal components sizing (cooling, storage, compressors)
- Reliable 24/7 software operation
- Meet critical safety requirements

Modeling Gas Systems with Simscape

Case study: Hydrogen Refueling Station

Algorithm Model and Deployment on Real-time Controller

- Automatic code generation from models
- Reduced coding time & errors
- Hardware independent source code
- Know-how captured in single source (model)

All relevant PLCs supported

Vendor	IDE	IEC 61131-3	C/C++	Connections Partner
3S - Smart Software Solutions	CODESYS	\checkmark		<
B&R Industrial Automation	Automation Studio	\checkmark	\checkmark	\checkmark
Bachmann Electronic	SolutionCenter	~	\checkmark	<
Beckhoff Automation	TwinCAT	\checkmark	\checkmark	\checkmark
Bosch Rexroth	IndraWorks	\checkmark	\checkmark	<
Mitsubishi Electric	CW Workbench		\checkmark	\checkmark
Omron	Sysmac Studio	\checkmark		\checkmark
Phoenix Contact	PC WORX	\checkmark	\checkmark	\checkmark
Rockwell Automation	RSLogix / Studio 5000	\checkmark		<
Siemens	TIA Portal / STEP 7	\checkmark	\checkmark	<

PLCs, ECU, custom hardware

Scalable to Certification Workflows Ensuring Highest Quality & Safety

- IEC 61508 Safety-related systems
- ISO 26262 Automotive / Motorcycle
- ISO 25119 Agriculture and Forestry
 - EN 50128 Rail

Ųŗ

- IEC 62304 Medical
- IEC 61511 Process Control
- DO-178 & DO-254

MATLAB and Simulink For Verification, Validation and Test

Enabling Green Hydrogen – Challenges H2 Handling and Usage

(Stage 2)

Transfer (tank-to-cell)

- Optimal components sizing (cooling, storage, compressors)
 - Leverage multi-domain simulation platform
- Reliable 24/7 software operation
 - Develop supervisory logic with state-of-the-art V&V capabilities
- Meet critical safety requirements
 - Model-Based Design streamline certification of your embedded systems

Stage 3. Hydrogen Consumption (e-mobility, electrification)

Enabling Green Hydrogen – Challenges H2 Handling and Usage

(Stage 2)

Transfer (tank-to-cell)

- Optimal components sizing (cooling, storage, compressors)
 - Leverage multi-domain simulation platform
- Reliable 24/7 software operation
 - Develop supervisory logic with state-of-the-art V&V capabilities
- Meet critical safety requirements
 - Model-Based Design streamline certification of your embedded systems

(Stage 3)

Consumption (E-mobility)

- Component-level vs system-level simulation
- Optimal system architecture (e.g., fuel cell multi-stack, battery)
- Expensive physical prototype testing

Fuel Cell System in Vehicle

Multiple Domains Used to Simulate Fuel Cell Systems....

... and Electrolyzers!

Figure 1: sscfluids_fuel_cell								1000	đ	X	
<u>F</u> ile	Edit	View	Insert	Tools	Desktop	Window	Help				Y
10	3 🔒	<u>ا</u>	3	E b							

Fuel Cell System in Vehicle

Fuel cell system operation in an FCV

- Determine instantaneous power demand
- Convert power demand to current demand
- Translate current command to H2 / Air flow commands
- Distribute current demand between battery and fuel cell

Choose the Appropriate Fidelity Level for Fuel Cell System Modeling

38

Ready

Ready

View 6 warnings

auto(daessc)

System Level Electrified Propulsion Unit

Hardware-in-the-Loop

Enabling Green Hydrogen – Challenges H2 Handling and Usage

(Stage 2)

Transfer (tank-to-cell)

- Optimal components sizing (cooling, storage, compressors)
 - Leverage multi-domain simulation platform
- Reliable 24/7 software operation
 - Develop supervisory logic with state-of-the-art V&V capabilities
- Meet critical safety requirements
 - Model-Based Design streamline certification of your embedded systems

(Stage 3)

Consumption (E-mobility)

- Component-level vs system-level simulation
 - Flexible modelling and simulation platform
- Optimal system architecture
 (e.g., fuel cell multi-stack, battery)
 - Perform trade-off analysis and monte carlo simulations
- Expensive physical prototype testing
 - Reduce physical prototypes, reuse models for Hardware-in-the-Loop tests

MATLAB EXPO

User Testimonial – Nuvera Cells

<u>Hydrogen Is the New Diesel:</u> <u>Electrifying Heavy-Duty Vehicles</u> <u>with Nuvera Fuel Cells</u> <u>Video</u>

" Using modeling and real-time simulation enables Nuvera's engineers to iterate on their design quickly and allows for experimentation without putting a real engine at risk."

Enabling Green Hydrogen - Conclusions

- Assert feasibility
 - techno-economic analyses
 - concept evaluation
- Secure sustainable and robust operation
 - design automation
 - optimization

Call to Action

- <u>Developing Hydrogen Production and Fuel Cell Applications with MATLAB</u> and <u>Simulink</u>
 - In-depth videos & resources
 - Customer references
- Additional resources
 - MATLAB and Simulink for the Utilities and Energy Industry
 - MATLAB and Simulink for Electric Vehicle Development
 - MATLAB and Simulink for Developing Power Generation and Transmission Equipment
 - MATLAB and Simulink for Verification, Validation and Test
- Shipping examples
 - <u>PEM Fuel Cell System (</u>2022a)
 - PEM Electrolysis System (2022a)

MATLAB EXPO

Thank you

© 2022 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.