시스템 시뮬레이션을 위한 인공지능과 모델기반설계의 통합

Disoss calling...

Two Projects

Motor Diagnostic

Lane and vehicle detection

Today's Objective: How to Build AI Functionality into your Systems

Learning Algorithms Driving the Al Megatrend

Statistics and Machine Learning Toolbox

Deep Learning Toolbox

Reinforcement Learning Toolbox

Learning Algorithms Driving the Al Megatrend

Oversteering Detection BMW

Predictive Maintenance

Baker Hughes

6

Digital Twin Atlas Copco

Automatic Ground-Truth Labeling Caterpillar

Deep Learning Toolbox

Airbus

Seismic Event Detection Shell

Reinforcement Learning Toolbox

Powertrain control Vitesco Technologies

Increasing System Complexity

Model-Based Design and AI can help build complex systems

System	System Functionality	Subsystem	Subsystem	System Integration
Requirements	and Architecture	Design	Implementation	and Qualification

Increasing System Complexity

Model-Based Design and AI can help build complex systems

Al-driven system design workflow

Data Preparation

Modeling & Training

Simulation & Test

Deployment

Integrating AI Models into Simulink

Al for algorithm development

- Simulate for system-level testing
- Verify system requirements
- Deploy overall design to CPU, GPU, ECU, FPGA or a mix of targets

AI for environment modeling

- Speed up high-fidelity model
- Use data-driven model where mathematical modeling is challenging
- Share component with non-experts in a particular modeling domain or tool

Case Study 1

Lane and vehicle detection

Why Machine Learning over traditional quantitative/qualitative methods?

- Higher accuracy
- Process may be challenging or impossible to model

Estimate Motor States with Machine Learning

How to Integrate Machine Learning?

Built-in Machine Learning blocks

MATLAB Function Blocks

- Preprocessing
- Feature Extraction
- Other models

Example: SVM Classification block

	Block Parameters: Predict using Classification SVM
SVM Classification (mask) (link)	
Classify observations using support	vector machine (SVM) classifier
Trained Machine Learning Model: Kernel: Linear Score Transform: Logit	
Standardize: Yes	
	Main Data Types
Parameters	
Trained Machine Learning Model Show output Score	svmMdI
	OK Cancel Help Apply

📣 MATLAB R20	21a																			- 0	\times
HOME	PLOTS		APPS											∰ SOC_NN b☆ BMS	🚬 SL_reset 🖏	a sandbox B a batte	ery C ₂ clean 🗐	🕝 🕐 🖲 subs	ystem simscape langua	ge 🗙 🌲	Javier 🔻
Design Get M App App	ore Install s App	Package App	Curve Fitting	Optimization	PID Tuner	Analog Input Recorder	Analog Output Generator	Modbus Explorer	CAN Explorer	CAN FD Explorer	System Identification	Wireless Waveform Ge	Signal Analyzer	Image Acquisition							-
		• Elleere	▶ igazzarr ▶ C)neDrive - MathWo	rks 🕨 Work 🕨	Seminars F	XPO2021 .		Arrs												- P
Command Wind	ow	03013	· Jgazzan · O	inconve maanvo	INS F WOIK F	Current Fold	ler					Workspace									(7)
fr												Name A		Value	Byte	c					
Command Wind	ow					Current Fold	ler					Workspace Name * Cout TrainedMo	odel	Value 1x1 SimulationOu 1x1 struct	Utput	¹⁵ 23037 12453424					
1111																					

Case Study 2

Motor Diagnostic

Lane and vehicle detection

Why Deep Learning over traditional Computer Vision?

- No feature engineering
- Higher accuracy

Highway Lane Following Model

Deep Learning Networks in MATLAB/Simulink

AI Lane Following Model

Intel CPU

CPU Simulation

GPU Simulation

MATLAB EXPO

Run on Jetson AGX Xavier

Run on Jetson AGX Xavier

Import Trained Models

User Story - Denso Ten

www.matlabexpo.com

"A model-based development workflow is essential in order to use AI for control ECUs. Combining the existing control model and the AI model enables us to establish a simulation environment and accelerate product development."

- Natsuki Yokoyama, Denso Ten

Additional AI Examples

Key Takeaways

Integrate trained AI models into Simulink

- Test design in simulation
- Code generation
- Integrate AI models from others

감사합니다

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.