인공지능 해부하기 : 설명 가능한 인공지능(eXplainable AI)
송완빈 과장
AI models you interact with regularly

Activity Monitoring

Smart Devices

Building Entrance

Self-driving car

At the doctor

Smart Home
Traditional Software Development

Data

Program

COMPUTER

Output
Machine Learning models provide the best results for many tasks.

✓ Desire to put ML models in production in safety critical situations.
Problems with Black-Box AI Models

Black-Box AI Model

Difficult to Interpret

Poor Decision Making

Why am I getting this decision?

How can I improve my decision?

Can I trust our AI Decisions?

How do I answer this customer complaint?

How do I monitor and debug this model?

Are these AI system decisions fair?

Business Owner

Customer Support

IT & Operations

Internal Audit, Regulators
What is “eXplainable AI”?

- Methods or techniques used to explain machine learning reasoning to humans

• **Interpretability**
 - Discern the mechanics without necessarily knowing why

• **Explainability**
 - Being able to quite literally explain what is happening
The goal of eXplainable AI

Today

Black Box AI

- Data → Black-box AI Model → AI Product → Decision, Recommendation

- Why did you do that?
- Why did you not do that?
- When do you succeed or fail?
- How do I correct an error?

Tomorrow

eXplainable AI

- Data → eXplainable AI Model → eXplainable AI Product → Decision, Explanation

- I understand why
- I understand why not
- I know why you succeed or fail
- I understand, so I trust you
Categorize with respect to the viewpoint of eXplainable AI

Complexity
- Intrinsic
- Post-hoc

Scope
- Global
- Local

Dependency
- Model-specific
- Model-agnostic
Viewpoint of eXplainable AI

- **Intrinsic / Transparency**
 - Model itself already have transparency and interpretable

- **Post-hoc**
 - Normally use complex model which has large predictive power and interpret later
Viewpoint of eXplainable AI

- **Global**
 - Provides an overview of the most influential variables in the model, based on the data input and the predicted variable.

- **Local**
 - Explains conditional interaction between input/output with respect to single prediction result
Viewpoint of eXplainable AI

- **Model-specific**
 - Deals with inner working of model to interpret its result

- **Model-agnostic**
 - Deals with analyzing the feature and its relationships with its output
Different Interpretability methods

Intrinsic
- Regression
- Tree Models
- Correlation

Model-Specific
- ACP
- tSNE
- MRMR

Model-Agnostic

Post hoc
- Predictor Importance (trees & ensemble)
- Occlusion Sensitivity
 - CAM, Grad-CAM
 - Activation
- Partial Dependence Plot
- Individual Conditional Exp
- Accumulated Local Effects
- LIME
- Shapley values

Local methods
Visual Interpretation of Features Across Layers
Activations
Deep Learning interpretability methods
Grad-CAM & Occlusion sensitivity

Truth: Coffee mug
AI: Buckle (15%)
AI classifies incorrectly as “buckle” due to the watch

scoreMap = gradCAM(net,X,label)

scoreMap = occlusionSensitivity(net,X,label)
Deep Learning interpretability methods
Grad-CAM & Occlusion sensitivity

✓ Initial investigation: why are my salad pictures misclassified as pizza?

✓ Hypothesis: the network is focused on the curving edges of pizzas

✓ Test: does this work for other data pizza images?

✓ Fix: add more pizza slice images and salads on plates with curved edges
Musashi Seimitsu Industry Uses Deep Learning for Visual Inspection of Automotive Parts

Challenge
Reduce the workload and cost for manually operated visual inspection of 1.3 million automotive parts per month, by implementing an anomaly detection system using deep learning.

Solution
Musashi Seimitsu built a camera connection setup, preprocess images, create a custom annotation tool, and improve the model accuracy. They generated code for the trained model using GPU Coder™, implemented it on NVIDIA® Jetson.

Benefits of using MATLAB and Simulink
• Enable a seamless development workflow from image capture to implementation on embedded GPU
• Estimate and visualize the defect area using Class Activation Mapping
• Create custom user interfaces with App Designer for improving labeling efficiency
• Leverage consulting services to maximize the benefits of using MATLAB

Using camera connection, preprocessing, and various pretrained models in MATLAB enabled us to work on the entire workflow. Through discussions with consultants, our team gained many tips for solving problems, growing the skills of our engineers.
Different Interpretability methods

Model-Specific
- Regression
- Tree Models
- Correlation

Model-Agnostic
- ACP
- tSNE
- MRMR

Intrinsic

Post hoc
- Predictor Importance (trees & ensemble)
- Occlusion Sensitivity
 - CAM, Grad-CAM
 - Activation
- Partial Dependence Plot
- Individual Conditional Exp
- Accumulated Local Effects
- LIME
- Shapley values

Local methods
LIME (Local Interpretable Model-agnostic Explanation)

- Fit a simple interpretable model for 1 query point

✓ Complex model and Point of Interest
✓ Approximate with Simple Model
✓ ‘Explain’ = drivers within area of interest

results = lime(blackbox)
LIME (Local Interpretable Model-agnostic Explanation)

- Fit a simple interpretable model for perturbed instances

![Original Image](image1)

![Interpretable Components](image2)

<table>
<thead>
<tr>
<th>Perturbed Instances</th>
<th>P(Egyptian Cat)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
</tr>
</tbody>
</table>

Fitting using weighted linear model

scoreMap = imageLIME(net, X, label)
By whitening your AI model, you can expect

Explainable AI

MATLAB

- PDP, ICE
- LIME, Shap
- Occlusion Sensitivity, CAM, Grad-CAM, Predictor importance, etc.

Use MATLAB functions to explain your model

Data Scientist

- I can understand my models & debug it easily

Manager

- I trust & understand the data scientist’s models

Regulator

- I can validate model fairness and trustworthy
Where can I use Knowledge learned from XAI?

- Decision Critical Application
 - Fraud detection
 - Self driving
 - Heath care

- AI Software = Code + Data
 (Model/Algorithm)

Scope Project → Data Preparation → AI Modeling → Simulation & Test → Deployment

Iterative Improvement

Big Data to Good Data
Start whitening your AI model with Golden References Today
감사합니다