건전성 예측관리를 위한 산업용 AI 솔루션 개발

엄준상 차장
Listen carefully. Which compressor has a faulty bearing?
Listen carefully. Which compressor has a faulty bearing?
Listen carefully. Which compressor has a faulty bearing?
Key Takeaways for Predictive Maintenance

Small gains can yield big rewards. Try different approaches, including deep learning.

You need AI and domain expertise. MATLAB helps you do both.

MATLAB can automate your entire workflow.
Journey 1:
Do you speak air compressor?

Fault Isolation with Acoustic Data

Journey 2:
Prognostics and Health management

RUL estimation using Deep Learning
Equipment Operation Manager

- Mechanical Engineer at Membrane Manufacturing*
- Responsible for a fleet of industrial machines
- New company AI initiative
- No deep learning experience

*Not a real company
Predictive Maintenance Workflow

DATA PREPARATION

- Data access and preprocessing
- Simulation-based data generation
- Feature engineering
Predictive Maintenance Workflow

DATA PREPARATION
- Data access and preprocessing
- Simulation-based data generation
- Feature engineering

AI MODELING
- Model design and tuning
- Hardware-accelerated training
- Model exchange across frameworks
Predictive Maintenance Workflow

DATA PREPARATION
- Data access and preprocessing
- Simulation-based data generation
- Feature engineering

AI MODELING
- Model design and tuning
- Hardware-accelerated training
- Model exchange across frameworks

DEPLOYMENT
- Embedded Devices
- Enterprise Systems
- Edge, cloud, desktop

ITERATION & REFINEMENT
Journey 1: Do you speak air compressor?
Journey 1: Do you speak air compressor?

- **Fault detection:** Identify specific faults to enable maintenance staff to respond more quickly
Journey 1: Do you speak air compressor?

- Acoustic time series data from sensors
- Labeled faults from maintenance logs

Goal

1. Healthy
2. Leakage Inlet Valve fault
3. Leakage Outlet Valve fault
4. Non-Return Valve fault
5. Piston Ring fault
6. Flywheel fault
7. Rider Belt fault
8. Bearing fault
Journey 1: Do you speak air compressor?

<table>
<thead>
<tr>
<th>Method</th>
<th>Validation Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensemble Bagged Trees</td>
<td>88%</td>
</tr>
<tr>
<td>Deep Neural Network</td>
<td>?</td>
</tr>
</tbody>
</table>
Journey 1: Do you speak air compressor?

<table>
<thead>
<tr>
<th>Goal</th>
<th>Data</th>
<th>Approach</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access data</td>
<td></td>
<td>Extract features</td>
<td>Generate C code for edge deployment</td>
</tr>
<tr>
<td>with datastore</td>
<td></td>
<td>with Audio Toolbox</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Train and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>validate LSTM</td>
<td></td>
</tr>
</tbody>
</table>

Access data with datastore
Extract features with Audio Toolbox
Train and validate LSTM
Generate C code for edge deployment
Air Compressor Data Classification

Part 1: Data Preparation

Copyright 2020 The MathWorks, Inc.

Table of Contents

Air Compressor Data Classification
Part 1: Data Preparation
 Create Dataset
 Split Into Training and Validation Sets
 Data Preparation
 Human Insight
 Generate Training Features
 Normalize Training Features
 Generate and Normalize Validation Features
 Generate MATLAB function compatible with C/C++ Code Generation
Journey 1: Do you speak air compressor?

- Successfully identified faults with 95% validation accuracy

<table>
<thead>
<tr>
<th>Method</th>
<th>Validation Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensemble Bagged Trees</td>
<td>88%</td>
</tr>
<tr>
<td>Deep Neural Network</td>
<td>95%</td>
</tr>
</tbody>
</table>
Journey 1: Do you speak air compressor?

- Successfully identified faults with 95% validation accuracy
Journey 1: Do you speak air compressor?

Poll: How could we improve the results?

- Collect more data
- Tune network hyperparameters
- Try a different feature set
- Try a different algorithm
- Buy more GPUs
Journey 1: Do you speak air compressor?

DATA PREPARATION
- Data access and preprocessing
- Simulation-based data generation
- Feature engineering

AI MODELING
- Model design and tuning
- Hardware-accelerated training
- Model exchange across frameworks

DEPLOYMENT
- Embedded Devices
- Enterprise Systems
- Edge, cloud, desktop

ITERATION & REFINEMENT
Journey 1: Do you speak air compressor?
Journey 1: Do you speak air compressor?

- What’s Next?

MATLAB을 활용한 임베디드 및 프로덕션 시스템으로의 AI 배포
Journey 1: Do you speak air compressor?

Poll: How could we improve the results?

- Collect more data
- Tune network hyperparameters
- Try a different feature set
- Try a different algorithm
- Buy more GPUs
Journey 2: RUL estimation using Deep Learning
Journey 2: RUL estimation using Deep Learning

<table>
<thead>
<tr>
<th>Goal</th>
<th>Data</th>
<th>Approach</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Predict Remaining Useful Life (RUL) of engines by CNN</td>
<td>- Run to failure 100 sequence data</td>
<td>- No prior knowledge of machine health prognostics and signal processing</td>
<td></td>
</tr>
</tbody>
</table>
Journey 2: RUL estimation using Deep Learning

- 100 engine with 21 sensor data

- Each row is a snapshot of data taken during a single operational cycle, and each column represents a different variable:
 - Column 1: Unit number
 - Column 2: Time-stamp
 - Columns 3–5: Operational settings
 - Columns 6–26: Sensor measurements 1–21
Journey 2: RUL estimation using Deep Learning

Goal

Data

Approach

Result
Journey 2: RUL estimation using Deep Learning
Journey 2: RUL estimation using Deep Learning

- **Goal**: RUL estimation using Deep Learning
- **Data**: Access data from files
- **Approach**:
 - Prepare data for CNN Training
 - Define Network Architecture, Train the Network
- **Result**: Deploy algorithms to the cloud
Journey 2: RUL estimation using Deep Learning

Deep Convolutional Neural Network
Remaining Useful Life Estimation using Convolutional Neural Network

This example shows how to predict the remaining useful life (RUL) of engines by using deep convolutional neural networks (CNN) [1]. The advantage of a deep learning approach is that there is no need for manual feature extraction or feature selection for your model to predict RUL. Furthermore, prior knowledge of machine health prognostics and signal processing is not required for developing a deep learning based RUL prediction model.

Download Dataset

This example uses the Turbofan Engine Degradation Simulation Dataset (C-MAPSS) [2]. The ZIP-file contains run-to-failure time-series data for four different sets (namely FD001, FD002, FD003, FD004) simulated under different combinations of operational conditions and fault modes.

This example uses only the FD001 dataset which is further divided into training and test subsets. The training subset contains simulated time series data for 100 engines. Each engine has several sensors whose values are recorded at a given instance in a continuous process. Hence the sequence of recorded data varies in length and corresponds to a full run-to-failure (RTF) instance. The test subset contains 100 partial sequences and corresponding values of the remaining useful life at the end of each sequence.

Download the Turbofan Engine Degradation Simulation dataset to a file named “CMAPSSData.zip” and unzip it to a folder called “data” in the current directory.

```matlab
% filename = “CMAPSSData.zip”;
% if ~exist(filename,'file')
%   url = “https://ti.arc.nasa.gov/c/6/”;
%   websave(filename,url);
% end
%
dataFolder = “data”;
% if ~exist(dataFolder,‘dir’)
%   mkdir(dataFolder);
% end
% unzip(filename,dataFolder)
```
Journey 2: RUL estimation using Deep Learning

Goal
Data
Approach
Result

RMSE (Mean: 20.72, StDev: 8.38)

RUL for Test engine #25 (random case)
Journey 2: RUL estimation using Deep Learning

- What’s Next?

MATLAB과 Simulink를 활용하여 지속적 환경에 통합 (CI: Continuous Integration)하는 방법
Six Months Later

- Increased uptime by 10%
- Want to expand to entire fleet, multiple locations
- Next project: Deploy Embedded AI model and Enterprise System
- Got a promotion! 😊
Companies are succeeding with MATLAB for Predictive Maintenance

Airbus detects defects in aircraft pipes with semantic segmentation

Siemens develops health monitoring system for distribution transformers

RWE Renewables detects anomalies in wind turbine bearings using neural networks

Mondi develops and deploys algorithms to predict plastic production machine failures
LG Energy Solution used Deep Learning for Predictive Maintenance on industrial cutter

Challenge
Maintenance of equipment in the factory also depends on the site engineer’s opinion, and sometimes those are a bit conservative.

Solution
Developed a condition monitoring system and deployed standalone executable which can acquire raw data from NI device directly, make a prediction and display the result in GUI.

Advantages of using MATLAB and Simulink
- Interactive Apps for generating features and training various AI models
- Capabilities of entire workflow from data acquisition to deployment
- Leveraged MathWorks engineer’s support for fast prototyping

“3 advantages of MATLAB that lead our project to success: App-based AI development workflow, compatibility with 3rd party hardware and short test cycle with rapid prototyping.”

Junghoon Lee, LG Energy Solution
Korea Institute of Energy Research uses MATLAB for Wind Turbine Health Monitoring System

Challenge
Develop Wind Turbine Predictive Maintenance algorithm within limited sensor data, Lack of experience on Industrial AI, real time monitoring solution.

Solution
Use MATLAB to develop, train, and evaluate a variety of supervised machine learning and deep learning diagnostic model.

Results
- Data aggregating, pre-processing from edge device
- Correlation analysis for 3K component based on 8K sensor data
- App Designer is great environment for monitoring system
- AutoML is easy to optimize diagnostic model

“Working in MATLAB, we developed a diagnostics model as a proof of concept. Despite having little previous experience with AI, within limited budget and timebound, we completed a prototype capable of detecting failure with over 90~95% accuracy.”
- Jung Chul, Choi, Korea Institute of Energy Research

>> KIER Customer Presentation
Key Takeaways for Predictive Maintenance

- Small gains can yield big rewards. Try different approaches, including deep learning.
- You need AI and domain expertise. MATLAB helps you do both.
- MATLAB can automate your entire Predictive Maintenance workflow.
Thank you