MATLAB EXPO 2021

진동 데이터 기반 배터리 커터 고장진단 딥러닝 모델 개발 *이정훈, LG에너지솔루션*

목차

- 1. 회사 및 발표자 약력 (Introduction to Organization and Business)
- 2. 프로젝트 개요 (Project Overview)
- 3. 기술적인 해결과제 (Project Goals and Challenges)
- 4. MathWorks 솔루션을 통한 해결 방안 및 결과 (How did we get there and leverage MathWorks)
- 5. 결과 및 정리 (Achievements and Outlook)
- 6. 다음 과제 (Further Details on Solutions Adopted)
- 7. 결론 (Concluding Remarks)

🕞 LG에너지솔루션

MATLAB EXPO

LG에너지솔루션 Mobility & IT

Mobility & IT Battery Solutions

LG에너지솔루션 Advanced Automotive

LG에너지솔루션 Energy Storage System

LG에너지솔루션 Global Operations

프로젝트 개요

Objective

 Development of Vibration Data-Driven Model for <u>Battery Electrode Cutter Fault Diagnosis</u> <u>System</u> using MATLAB Deep Learning Workflow

Milestones & Members

- Total 6 months (Sep. 2020 ~ Mar. 2021)
- Junghoon Lee (LG Energy Solution) / Wanbin Song, Kevin Suh, Jake Kim (MathWorks)

Conclusion

- Interactively analyzed raw field data by applying various MathWorks Apps, including Signal Analyzer and Diagnostic Feature Designer
- Established <u>reusable machine learning development workflow</u> with rich discussion of domain knowledge from LG Energy Solution and feature engineering and machine learning techniques from MathWorks
- <u>Tested a prototype of Battery Electrode Cutter Fault Diagnosis System</u> at a pilot line of LG Energy Solution

기술적인 해결과제

Background

 Currently maintenance of battery electrode cutter is scheduled periodically and rely on site operator's opinion

기술적인 해결과제

Solution Concept

 Monitoring vibration generated during electrode cutting to diagnose cutter life and predict replacement timing in advance

MathWorks 솔루션을 통한 해결 방안 및 결과 Machine Learning Development Workflow

Focused on algorithm development part

MathWorks 솔루션을 통한 해결 방안 및 결과

Key takeaways of each stage

• Explore and preprocess data

- 3 channel data for each observation
- Explore and analyze signal with respect to time-domain and spectraldomain using Signal Analyzer App
- Provide possibilities on how to gain insight from signal data.

Discover patterns

MATLAB EXPO

MATLAB EXPO

MathWorks 솔루션을 통한 해결 방안 및 결과

Key takeaways of each stage

- Feature Engineering

<Auto-generated Feature designing function>

- Feature extraction using Diagnostic Feature Designer and analyze discernment of normal data from abnormal
- Figure out that some of features can distinguish normal/abnormal data
- Provide possibilities on feature ranking, transformation and merging.

Domain Knowledge Select Features

MathWorks 솔루션을 통한 해결 방안 및 결과 Key takeaways of each stage

Machine / Deep Learning for Anomaly detection

0.2%

0.1%

Confusion Matrix: Validation Da Before 621 클래스 After 99.9% 99.9% 0.2% 0.1% Before After 예측 클래스

<Machine Learning model>

- Supervised Learning
 - Classification model trained and optimized with learner app
- Unsupervised Learning
 - PCA and Kmeans clustering
 - AutoEncoder for anomaly detection
- More steady state dataset can improve the trained model.

MATLAB EXPO

• Step Training • Cancel • Auto-encoder trainnig >	Method	Validation Accuracy
р	2 class classification	99.86 %
	5 class classification	92.51 %
	PCA	N/A
	K-means Clustering	85.39 %
ned model	Auto Encoder	97.33 %

<Dimension reduction>

결과 및 정리

 Machine / Deep Learning analysis of data before and after Lamination Cutter replacement results in 95% chance to diagnose Cutter health

다음 과제

- Data acquisition and modeling cutter vibration data by battery model
- <u>Real-time Battery Electrode Cutter Fault Diagnosis System</u> set-up and verification by checking vibration data generated when cutting battery electrodes

 Deployment after completing pilot line verification using an app designbased compiled program

결론

Conclusion Summary

- LG Energy Solution and MathWorks successfully completed the cooperation including technical guidance with LG Energy Soultion's raw field data
- LG Energy Solution and MathWorks <u>developed a condition monitoring system</u> to avoid wasteful maintenance as well as unexpected failures
- After training the anomaly detection model with selected features from a raw dataset, We successfully integrated the model into the production line
- LG Energy Solution established <u>reusable Machine / Deep Learning development workflow</u> with rich discussion of domain knowledge from LG Energy Solution and feature engineering and machine learning techniques from MathWorks

Advantages of using MATLAB and Simulink

- Interactive Apps for generating features and training various models
- Capabilities of entire workflow from data acquisition to deployment
- Leveraged MathWorks engineer's support for fast prototyping