MATLAB EXPO 2021

MATLAB을 활용한 임베디드 및 프로덕션 시스템으로의 AI 배포

장규환 차장

Using the concept of convective heat transfer to estimate the amount of oil in a transformer tank

SIEMENS

Ingenuity for life

Deployment to Embedded and Enterprise Systems

Enterprise

Health Monitoring of Distribution
Transformers **SIEMENS**

Embedded

Card to Classify Blood Type

IDNEO

Agenda

Deploying AI to production is difficult

Three specific challenges:

- 1. Limitations of Embedded hardware
- 2. Ongoing changes in environment or system behavior
- 3. Scale to production load in Enterprise systems

Two Approaches for integrating AI with Larger System

Embedded Deployment of Acoustic Scene Recognition

Squeezenet ~5MB ResNet-50 ~100MB

Limited resources

Quiz: Which Sounds do you hear?

Embedded Deployment of Acoustic Scene Recognition

Reformat the data

Convolutional Neural Networks (CNN)

Squeezenet ~5MB ResNet-50 ~100MB

Limited resources

How can Embedded Deployment Be Enabled?

Use Deep Network Quantizer to Optimize the Inference Network

```
load('trainedNet');
analyzeNetwork(trainedNet);
numData = size(xTrain);
numData = numData(end);
augImds = augmentedImageDatastore(trainedNet.Layers(1).InputSize, xTrain, yTrain);
calDS = augImds.subset(1:floor(numData * 0.8));
valDS = augImds.subset(floor(numData * 0.8)+1:numData);
dq = dlquantizer(trainedNet, 'ExecutionEnvironment', 'GPU');
dq.calibrate(calDS)
```

- Load trained network
- Split data: calibration 80%, validation 20%
- Launch Deep Network Quantizer App

Agenda

Deploying AI to Embedded and Enterprise systems is difficult

Three specific challenges:

- 2. Ongoing changes environment or system behavior
- 3. Scale to production load in Enterprise systems

Al models reflect System behaviors and Environment

(illustration only; not based on actual data)

Al models reflect System behaviors and Environment

Deployed Models Need to Adapt.

Model Updates in Embedded Deployment

Model Updates in Embedded Deployment

Agenda

Deploying AI to Embedded and Enterprise systems is difficult

Three specific challenges:

- 1. Limitations of Embedded hardware
- 2. Ongoing changes environment or system behavior
- 3. Scale to production load in Enterprise systems

Enterprise Deployment of AI

Integrate with Enterprise Systems and Scale to Production Load

Example: Incremental Health Monitoring

Sensor data

Anomaly Detection loop

```
while segn % ... there's more data to process
   % Retrieve buffer of data
    datafilter = (sensordata.key == thisAsset) & (sensordata.Seque
        (sensordata.SequenceNumber <= seqn+batchsize);</pre>
    streamdata = sensordata(datafilter,:);
    % Detect Anomalies with incremental One-class SVM
    [nextState, results] = detectAnomalyLocal(streamdata, state);
    % Remember results and update state of incremental learner
    anomalies(datafilter) = results.anomaly;
    score(datafilter) = results.score;
    timestamps(datafilter) = results.timestamp;
    state = nextState;
    seqn = seqn + batchsize; % step through batch test data
end
```


Incremental Learning within Streaming Architecture

```
incMdl = incrementalLearner(mdl);

while dataStreaming
  featureChunk = extractFeatures(streamdata);
  inclMdl = updateMetricsAndFit(incMdl, featureChunk, labels);
End
```


Incremental Learning within Streaming Architecture

Operationalize AI without recoding

Model DevOps: Operationalize AI without recoding

Agenda

Deploying AI to Embedded and Enterprise systems is difficult

Three specific challenges:

- 1. Limitations of Embedded hardware
- 2. Ongoing changes environment or system behavior
- 3. Scale to production load in Enterprise systems

Conclusions

Deploy to Embedded and Enterprise systems from one codebase

Tools for handling deployment-specific challenges:

- Fit models to embedded hardware with Quantization / Fixed-Point conversion
- Scale to data and users with MATLAB Production Server
- Incrementally adapt deployed models to maintain performance

Design, Deploy and Maintain Al-powered systems in one framework

Learn More

Check out our handout with links to customer stories, documentation – and examples which you can try out in MATLAB Online

DevOps for Software and Systems: Operationalization of Algorithms and Models

Deploying AI on PLCs

MATLAB EXPO 2021

감사합니다

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.