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Machine Learning and Deep learning have grown rapidly over the
last decade

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

Supervised and Unsupervised Statistical Models...

DEEP LEARNING

Neural networks, GANs, Autoencoders....
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Use of Al in signal processing applications is growing rapidly

UT Austin Researchers Convert Brain Signals to Words and

Phrases Using Wavelets and Deep Learning

Battelle Neural Bypass Technology Restores Movement to a

Paralyzed Man’s Arm and Hand

Patient using the Battelle NeurolLife system

Shell performs Seismic Event Detection with Deep Learning

Challenges
= Terabytes of passive seismic data from geophones
= Traditional methods time/labor intensive (5 months &~ $100K)
= Event detection inconsistent/unreliable in ‘low’ signal to noise
records

Solution
= Train LSTM network to detect P-wave and S-wave arrivals via
sequence-to-sequence classification

S-Arrival (Observed)
e

Results
= >08% accuracy for arrival prediction

= Networks generalizes to other data (sites, source
mechanisms)
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Connected Devices ﬁ
Hi Ken

‘ onnected Devices
‘ SORRY
e
Authorized User
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S-Arrival (Prediction) Arrival Time

Voice Interface: The Touchscreen of the Next Century

How Al and Signal Processing Came Together to Track the DNA of Sound




Modulation Classification of RF waveforms
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Radar detection with am interfering emitter

Radar Interference Detection



MATLAB EX

Al-driven system design

Data Preparation Al Modeling

Deployment

||||||‘|| Data cleansing and @7 Model design and
preparation tuning

.. == Hardware
“ moimo
@ Human insight accelerated training
¢ Edge, cloud,

'Dﬁ Simulation- ‘}k Interoperability
generated data desktop

h Iteration and Refinement A

. Embedded devices

I% Enterprise systems




Preparing and labelling data

Data Preparation

'|‘|'|‘|' Data cleansing and
preparation

@ Human insight

Simulation-generated
data

Q. How to label collected data?

Q. What If it Is not possible to collect
data?



Labeling Signals with Signal Labeler App

MATLAB EXF

4\ Signal Labeler*

LABD‘;R

New Import
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~ Label Definitions

Name
ECG_Signal_1
ECG_Signal_2
ECG_Signal_3
ECG_Signal_4
ECG_Signal_5
ECG_Signal_6
ECG_Signal_7
ECG_Signal_8
ECG_Signal_9
ECG_Signal_10
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Generate Synthetic Data for various applications in MATLAB

MATLAB EX

Simulate data using Simulink models Generate wireless waveforms
: T2
: Ty - Lm
Triplex Pump with Faults Et- — n ‘.
| : S .w,._
Generate Radar Returns Generate and Augment Audio Data
) text2speech
;% z ? Original
2 Pitch shift
: m [ Timesoon Extonded
? Add noise Dae
-1'2 50 100 150 200 250 300 350 400 450 ggtga"s]::




Generation of wireless communication waveforms Wlth |mpa|rments

« Modulate digital baseband signals using built-in functions

 BPSK, QPSK, 8PSK, FM, DSB-AM, SSB-AM, GFSK,PAM4

 Easily account for various impairments

 RF / Hardware impairments (Frequency/ Phase Offsets etc. )
« Channel Impairments (Multipath Fading Channels)

Generate Datasets for Deep Learning

» 5000 frames generated for each modulation type
« 80% data — Training; 10% data — Validation; 10% data - Test

Amplitude

Amplitude

MATLAB
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Feature Extraction

Data Preparation

'|‘|'|‘|' Data cleansing and
preparation

@ Human insight

Simulation-generated
data

Q. Can | use raw data?

Q. How do | extract the right features
for my data?



MATLAB BEXIPPO

Use of raw data for Al models
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Feature extraction with signal processing techniques

Time-Domain Features

« Signal Patterns
« Changepoints

* Peaks

« Signal Envelope

Frequency-Domain Features

Mean Frequency Estimate

[ i)
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Frequency (kHz)

Powesfrequency (dBHz)
L b o b b
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8

- BW
measurements

« Spectral Statistics

« Octave Spectrum

o SITFT

« CWT

* Constant-Q
Transform

Domain-Specific Features

Ermpy

« Speech and audio

* Navigation and
Sensor Fusion

 Radar

« Communication

MATLAB BEXIPPO
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Building the Al models

Al Modeling

o Mol desin an Q. How do | select the right model for
e my application:

Hardware - If I do not have enough data?

— acceleratediraining If | do not have domain expertise?

,:k y « If | need an easily interpretable model?
Interoperability



Start by using pub

Deep Neural Network Architectures for Modulation
Classification

Xiaoyu Liu, Diyu Yang, and Aly El Gamal
School of Electrical and Computer Engineering
Purdue University
Email: {liul962, yang1467, elgamala} @purdue.edu

Abstract—In this work, we investigate the value of employ- convolutional neural networks (CNN) to the task of radio
ing deep learning for the task of wireless signal modulation modulation [1]

Ished literature and MATLAB examples

K. Hassan, |. Dayoub, W. Hamouda

Automatic Modulation Recognition Using Wavelet
Transform and Neural Networks in Wireless Systems

& M. Berbineau

recognition. Recently in [1], a framework has
by generating a dataset using GNU radio tha
imperfections in a real wireless channel, and uses

types. Further, a neural ng
architecture was developed and shown to deliver
that exceeds that of expert-based approaches. Hel
the framework of [1] and find deep neural network
that deliver higher accuracy than the state of the g
the architecture of [1] and found it to achieve ar|
approximately 75% of correctly recognizing the mod
We first tune the CNN architecture of [1] and

Time-Frequency Analysis based Blind Modulation Classification for Multiple-Antenna
Systems

Weiheng Jiang®, Xiaogang Wu®, Bolin Chen®, Wenjiang Feng®, Yi Jin"

with four convolutional layers and two dense lay Schoo! of Mi iy and cation &

an accuracy of approximately 83.8% at high S
develop architectures based on the recently introd|
Residual Networks (ResNet [2]) and Densely Conned
(DenseNet [3]) to achieve high SNR accuracies of a
83.5% and 86.6%, respectively. Finally, we introd|

. Chongging University, Chongging 4000464, Chin

X0"an Branch of China Aademy of Space Technology, Xi'an 710100, China.

Iutional Long Short-term Deep Neural Network (C
achieve an accuracy of approximately 88.5% at hij Abstract

1. INTRODUCTION

munication systems. Modulation recognition taf
erally used for both signal detection and demod
signal transmission can be smoothly processed o
signal receiver demodulates the signal correctly. H
the fast P of wireless icati

methods and parameters used in wireless commul

Traditional modulation recognition methods u:

prior knowledge of signal and channel b based on baseband signals.

arXiv:1712.00443v3 [cs.LG] 5 Jan 2018

ered through a separate control channel. Hence,

Blind modulation classification is an important step to implement cognitive radio networks. The multiple-input multiple-output
(MIMO) technique is widely used in military and civil communication systems. Due to the lack of prior information about channel
Signal modulation is an essential process in W "= parameters and the overlapping of signals in the MIMO systems, the traditional likelihood-based and feature-based approaches

cannot be applied in these scenarios directly. Hence, in this paper, to resolve the problem of blind modulation classification in

MIMO systems, the time-frequency analysis method based on the windowed short-time Fourier transform is used to analyse the

time-frequency characteristics of time-domain modulated signals. Then the extracted time-frequency characteristics are converted
©_into RGB spectrogram images, and the convolutional neural network based on transfer learning is applied to classify the modulation
and more high-end requirements, the number o <t types according to the RGB spectrogram images. Finally, a decision fusion module is used to fuse the classification results of all
the receive antennas. Through simulations, we analyse the classification performance at different signal-to-noise ratios {SNRs),
tems is increasing rapidly. The problem of how | ™ the results indicate that, for the single-input single-output (SISO) network, our proposed scheme can achieve 92.37% and 99.12%
modulation methods accurately is hence becomin| —__ average classification accuracy at SNRs of -4 dB and 10 dB, respectively. For the MIMO network, our scheme achieves 80.42%
lenging [0 and 87.92% average classification accuracy at -4 dB and 10 dB, respectively. This outperforms the existing classification methods

be inaccurate under mild circumstances and neeq 3 Keywords: Time-Frequency Analysis, Blind Modulation Classification, Multiple- Antenna Systems, RGB Spectrogram Image

autonomous modulation recognition arises in wirg
where modulation schemes are expected to chan;
as the environment changes. This leads to com
modulation recognition methods using deep new|

Deep Neural Networks (DNN) have plaved a si

= 1. Introduction
==

o0 The increase in communication demands and the shortage
of spectrum resources has caused the cognitive radio (CR) and
O’ multiple-input multiple-output (MIMO) techniques to be im-
> plemented in wireless communication systems. As one of the
* essential steps of CR, modulation classification (MC) is widely
¢ applied in both civil and military applications, such as spec-
< trum surveillance, electronic surveillance, electronic warfare,
('\1_ and network control and management [1]. It improves radio
spectrum utilisation and enables intelligent decision-making for
context-aware autonomous wireless spectrum monitoring sys-
tems [2]. However, most of the existing MC methods are fo-
cussed on single-input single-output (SISO) scenarios, which
cannot be directly applied when multiple transmit antennas are
equipped at the transceivers [3]. Therefore, it is erucial to re-
search the performance of the MC method for MIMO commu-
nication systems.
Traditional MC approaches for the SISO systems discussed

arXiv

fast modulation ¢l ion and blind mq ion classifi
tion (BMC). By contrast, the FB approaches cannot obtain the
optimal result, but they have lower computational complexity
and do not require prior information. The FB methods usually
include two steps: feature extraction and classifier design. The
higher-order statistics, instantaneous statistics, and other fea-
tures are calculated in the feature extraction. Then the popular
classification methods, such as decision tree [7], support vector
machine [8] [9], and artificial neural network (ANN) [10] [11]
are adopted as the classifiers.

‘With the rapid rise of artificial intelligence and the emerg-
ing requirements of intelligent wireless communication, deep
learning-based approaches are now becoming widely studied
and used in different aspects of wireless communication, such
as the transceiver design at the physical layer [12] and BMC
problems [13] [14] [15] [16] [17] [18]. As for BMC in SISO
scenarios, the raw in-phase and quadrature phase (IQ) data or
the time-domain amplitude and phase data can be directly used
as the input of the deep learning neural network. More specif-

in the literature can be classified into two main categories: likelihood;c )1y the authors in [13] presented convolutional long short-

g 2010, Article number: 532898 (2010) | Cite this article

etrics

nt characteristics used in signal waveform

br automatic digital modulation recognition is

bd using higher-order statistical moments (HOM)
ja features set. A multilayer feed-forward neural
tion learning algorithm is proposed as a classifier.
rent M-ary shift keying modulation schemes and
nal information. Pre-processing and features
analysis is used to reduce the network complexity
. The proposed algorithm is evaluated through
pability. The proposed classifier is shown to be

me with high accuracy over wide signal-to-noise
Gaussian noise (AWGN) and different fading

Classify ECG Signals
Using Long Short-Term
Memory Networks

Classify heartbeat electrocardiogram
data using deep learning and signal
processing.

- ]

[— ]

Label QRS Complexes and
R Peaks of ECG Signals
Using Deep Learning...

Use Signal Labeler to locate and
label QRS complexes and R peaks
of ECG signals.

Waveform Segmentation
Using Deep Learning

Segment human electrocardiogram
signals using time-frequency
analysis and deep learning.

Label Spoken Words in
Audio Signals Using
External API

Use Signal Labeler to label spoken
words in an audio signal.

MATLAB BEXIPPO

Py e ™"
Iterative Approach for
Creating Labeled Signal
Sets with Reduced Huma...

Use deep learning to decrease the
human effort required to label
signals.

>

Labeling Radar Signals
with Signal Labeler

Label the time and frequency
features of pulse radar signals with
added noise.
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Understanding tradeoffs for model selection

Data Volume

4 2epp deariningTransfer Learning
with ravitbl4#aNs or LSTMs

‘ Manual Feature Extraction + Machine
Learning

scmmmv:mmnmamn
L 1 .

Deep Iearnlhg@« v
with few features 3

Wavelet Scatter E P“ g wp.» W W = ly Generate Data

-~ "I "Machine Learning

W

Fixed Fixed Fixed

Signal Pronsissiing idevilgd<nowledge

MATLAB BEXIPPO
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MATLAB EXF

There are three ways to build Al models in MATLAB

ep Netwark Designer

imagelnputlLayer ([2 spf 1], '
'Input Layer')

convolutionZ2dLayer (filterSiz

Inception-v3 ) [ ResNet-101 | | VGG-16 Inception-
'Name', 'CNN1") . .\ ResNet-v2
u»u‘m‘ ol . ResNet-18 ) [ GoogleNet | ( DenseNet201 |~
batchNormalizationLayer('Namé S | " squeezeNet ) [ AlexNet ) | ResNet50 y L veets
relulayer ('Name', 'ReLUl'") e T
maxPoolingZdLayer (poolSize, '
fitcauto/fitrauto
Writing code Interactively Design Models with Use Transfer Learning
Apps for Deep Learning

15



lterate to find the best model with Experiment Manager App

EXPERIMENT MANAGER

= e
= u
Layout tart Al Stop

- + =

FILE NVIRONMENT PARALLEL RUN

- [i] DeeplLeamingProject

- A Experiment1
Resultd (Running)
] Resuits
Result2
Result!

- e Experiment2
Result2
EH Result1

B B 7 W

Training Confusion  Filter  Annotations

Plot Matrix + - -
REVIEW RESULTS FILTER | ANNOTATIONS =~ EXPORT r e
Experiment1 Experiment1 | Result4 =]
w Exhaustive Sweep Result
Experiment1 Start: 11/10/2020, 10:12:07 AM I - 6 Trials
(View Experiment Source)
Image Classification by Sweeping Hyperparameters @ Complete 2 A Stopped 0 @ Error 0
QO Running 2 = Queued 2 ¥ Canceled 0
5]
Trial Status Progress Elapsed Time mylnitialLearnRate Training Accuracy (%) Training Loss Validation Accuracy (%) Validation Loss
1 & Complete I 100 0% 0 hr 1 min 21 sec ©.0025 98.4375 9.1282 56.7200 1.3626
2 & Complete I 100 0% 0 hr 1 min 27 sec @.0850 99.2188 ©.8664 60.1600 1.4052
3 O Running 1 I 73.4% 0 hr 0 min 45 sec 2.8875
4 Q Running » I 65.2% 0 hr 0 min 37 sec @.0108
5 = Queued ] 0.0% @.8125
6 = Queued ] 0.0% @.815@

VISUALIZATIONS

Training Plot (Trial 3, Resultd, Experiment1)

100
— 80
8 _
g 60 P ———— = * - =
B .
g a0 s
g
20
5 | | |Epoch 2 | | Ffpoch 3 | | Epoch 4 |
20 40 60 BO 100 120 140 160 180 200
Iteration
-------------------- O e —_—
Epoch1 | I {Epoch2 | L Epoch 3 | Epoch 4 ]
20 40 60 80 100 120 140 160 180 200
lteration

MATLAB EX

-

Find optimal
training options

.
("

Compare the
results of using
different data sets

_J
)

.
("

-

Compare the
results of using
different models

_J
)

J
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MATLAB

Generation of wireless communication waveforms Wlth |mpa|rments

« Modulate digital baseband signals using built-in functions
« BPSK, QPSK, 8PSK, FM, DSB-AM, SSB-AM, GFSK,PAM4

Amplitude
o] o]
o o
Ln = Ln

Amplitude

= =

o o

un = un

Armplitude

= =

=] ]
un = [¥,]

Amplitude
[

o
Ln =

« Easily account for various impairments tmems  Tmems  Tmeims  Timems
 RF / Hardware impairments (Frequency/ Phase Offsets etc. )
« Channel Impairments (Multipath Fading Channels)

CPFsSK B-FM

" 0.05 @ 0.05 a "
£ £ £ E
< 0.05; 5“ 0.05; . < <
. ime [ms Time {ms) Time (ms) ime (ms
 Generate Datasets for Deep Learning e e
» 5000 frames generated for each modulation type versserameatns: [0 2 )
« 80% data — Training; 10% data — Validation; 10% data - Test oirectratroopicranire:

MaximumDopplershift: 4
DopplerSpectrum: [1x1 struct]

Show all properties
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Data generation with Wireless Comm

Mesw  Open Save

UVE ECITCR

LL'J L— . | H Eahrd Files ﬁ— {; = Mormal = EI Task = & s
L compars 54 6o To + _ml' £} i rade =2 cortrol v — B
- Pt  Fird = B Reractor> =

-

-

56

57
58
59
69
&1
62
B3
&4

=15]
&7
&8
69
78

ALZ

MAIGATE TEX LOoE

sat trainMaow to true).

trainNow = I'_Train network now v_'|_‘.
if trainNow == true
numFramesPerMadType = 5888;
else
numFramesPerModType = 588;
end
percentTrainingSamples = 88;
percentValidationSamples = 18;
percentTestSamples = 18;

Waveform Generation for Training
Generate 10,000 frames for each modulation type, where 80% is used for fraining, 10% is used for validation and 10% is used for testing. We use training and validation frames during
the network training phase. Final classification accuracy is obtained using test frames. Each frame is 1024 samples long and has a sample rate of 200 kHz. For digital modulation
types, eight samples represent a symbol, The network makes esach decision based on single frames rather than on multiple consecutive frames (as in video). Assume a center
frequency of 802 MHz and 100 MHz for the digital and analog modulation types, respectively.

sps = 8; % Samples per symbal
spf = 1824, % Samples per frame
symbolsPerFrame = spf / sps;

fs = 288e3; % Sample rate

fc = [9B2e6 1BBe6];

Create Channel Impairments
Pass each frame through a channel with

= AWGN

% Center frequencies

|I> =] secton 2reak
= =
[E.'- Eun and Advanca

Secton [k Run to End
SELTION

Fun

b

Run

(=
Step  Stop

FuJN

UiF-g

sorpt

MATLAB E3

n 1

To run this example quickly, use the trained network and generate a small number of training frames. To train the network on your computer, choose the "Train network now" option {i.e.

il
| Ll

W @

ol i
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Selecting the Right Model : Und

4 Deep learning

erstanding Tradeoffs

with raw data
“Transfer learning ,
' with TF Deep learning
Q ! ps with few features
= == |
O - | 14
> L N
@ W bl |
< z}'ﬁ T Mﬁ "~ | Machine Learning
A N e e gmgeees with many features

Signal Processing / Domain Knowledge

MATLAB BEXIPPO
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MATLAB EXP

Continuous Wavelet Transform is used to extract the Time-

Frequency maps BPSK 16QAM
| . . g g " |
* One line of code for generating wavelet time- = 2 g :
frequency visualization in MATLAB. Works for E =
any signal ‘E < .005 |
>> cwt (inputSignal) 0 5
TIITIE: [rrt5]- Time (ms)
BPSK 16QAM

 Localizes sharp transients and slowly varying
oscillations simultaneously

« Works with complex data

20



MATLAB EXIPC

Using time-frequency maps as inputs to a pretrained CNN

SK
PAM4
SSB-AM |
224

v

dgerse  ——p BPSK
—>  16-QAM
—» PAM4
Max 1000
- 11ee

21



MATLAB BEXIPPO

Transfer Learning with Deep Network Designer App

4 Deep Netw

4\ Deep Metwork Designer Start Page - O *

Getting Started | Compare Pretrained Metworks | Transfer Learning

v General

Blank Network From Workspace

v Pretrained Networks

-
GO

% a06a &
m@‘[: 0000 [

SqueezeNet GooglLeNet ResMet-50 EfficientNet-b0 DarkMNet-53 DarkNet-19

Shria mnra

22



MATLAB BEXIPPO

Train and Test Deep Network

E Training Progress (03-Mar-2021 12:18:33) = O x
Training Progress (05-Mar-2021 12:18:33) Training iteration 2 of 12260...
)
100
Training Time
El Start time: 05-Mar-2021 12:18:33
a0k Elapsed time: 19 sec
70+ Training Cycle
o= Epoch: 10f20
= goft .
5 Iterations per epoch: 613
% 50 - Maximum iterations: 12260
Z
40 Validation
30 Frequency: 50 iterations
20 -—. Other Information
a0 Hardware resource: Single GPU
Epoch 1 Learning rate scheduls: Constant
1 1 1 1 Il 1 1 L 1 I
0 o Al
0 10 20 30 40 50 60 70 80 90 o G 0.0001
Iteration
[ Leam more
4+
[ ] Accuracy
3 = Training (smoothed)
@ - Training
e
2 — —@— - Validation
= Loss
————— Training (smoothed)
0 1 Epoclp 1 I 1 1 [ [ 1 | I T
0 10 20 30 40 50 60 70 20 90 100 eI
Iteration — —@— - Validation
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Train and Test Deep Network

4 Training Progress (05-Mar-2021 12:18:33)

Accuracy (%)

Loss

~N
-

Training Progress (05-Mar-2021 12:18:33)

Epoch 2

Epoch 3

Epoch 41

P

Epoch 1
0

500

1000

Iteration

1500

2000

500

1000

Iteration

1500

2000

Training iteration 2263 of 12260...

m ©

Training Time
Start time: 05-Mar-2021 12:18:33
Elapsed time: 13 min 52 sec
Training Cycle
Epoch: 40f20
Iterations per epoch: 613
Maximum iterations: 12260
Validation
Frequency: 50 iterations
Other Information
Hardware resource: Single GPU
Learning rate schedule: Constant
Learning rate: 0.0001
[l Learn more
Accuracy
Training (smoothed)
Training
— -@— - Validation
Loss
Training (smoothed)
Training
— -@— - Validation

T Cles

MATLAB BEXIPPO

Confusion Matrix (overall accuracy: 09768)

TE2AM

B-FM

BFSK

4

CPFEK

0.4%

DEB-AM

GF3K

PAMA

SSE-AM

3.0%

6.2%

1.2% T5%

0.T%

0.3%

21%

0.1%

28%

6.1%

160AM B-FM

BFSK

CFFSK

DSE-AM  GFSK
Predicted Class

FAM4  3SB-AM
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| MATLAB BEXIPPO

Testing network with connected hardware

@ Modulation Classification with Deep Learning - [m] X
Setup

Waveform Modulation Classifier

Receiver Radio —_ADALM-PLUTO v Live Demo Transmitted Waveform _
# Frames per Modulation [jl off © on Predicted Modulation _

Received Waveform (IQ vs. time)

G

16QAM B-FM BPSK CPFSK DSB-AM GFSK PAM4 SSBAM
Waveform type
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Al-assisted system design

Data Preparation Al Modeling

@ Model design and
tuning

s Hardware
[_H el oG
—aCa  accelerated training

‘}k Interoperability

||||||||| Data cleansing and
preparation

@ Human insight

Simulation-
generated data

Deployment

. Embedded devices

% Enterprise systems

¢ Edge, cloud,
desktop

MATLAB EX
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Deep Learning can be used in each step of the Al workflow

Manually
Correct
Neural
Inspect Network
Auto
Label

Labeling assistance

classifySound (YAMNet) ,h GoogLeNet,
fitcecoc (ResNetl8)

Real Signal > Predict
.| Discriminator —— Labels
Label »
abers (Real/Gen)
Generated
Generator |— .
Noise . Fake Signal

Synthetic Data Generation
Generative Adversarial Networks
(GANSs)

MATLAB EX
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Deep Learning can be used in each step of the Al workflow

: Features
1 R @

features

vggFeatures(audioIn,fs);)

Feature Extraction

vggFeatures, waveletScattering

MATLAB BEXIPPO

!

Frequency (kHz)
[ =] [l L) L F=y

_"0 -. v.

RelLU

rectified linear units

Convolution

Pooling

50 100150200250

________ Time (ms)

Differentiable Signal Processing

dlstft (Differentiable STFT)

28



Al-driven system design

Data Preparation

||||||||| Data cleansing and
preparation

@ Human insight

Simulation-
generated data

Al Modeling

@ Model design and
tuning

s Hardware
[_H el oG
—aCa  accelerated training

‘}k Interoperability

MATLAB EX

Deployment

. Embedded devices

% Enterprise systems

¢ Edge, cloud,
desktop

29



Deploy to any processor with best-in-class performance

<A B3

NVIDIA.

Preprocessing, Feature
Extraction, Al Model

MATLAB BEXIPPO
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MATLAB EXP

Deploying complete Al algorithms to embedded processors, GPUs
and FPGAs

BPSK 160AM PAME GFSK
I
CPPsSK 8-FM D58-AM S98-AM
Continuous Wavelet Deep Networks
p— Transform
Ll il
WY LAY

Modulation Classification
Using Wavelet Analysis on
NVIDIA Jetson

Generate and deploy a CUDA®
executable that performs modulation
classification using features
extracted by the continuous wavelet

NVIDIA.
CUDA

‘ @a C/IC++
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MATLAB EX

Deploying complete Al algorithms to embedded processors, GPUs

and FPGAs

CPFsSK 8-FM DS8-AM S585-AM
.1

Modulation Classification
Using Wavelet Analysis on
NVIDIA Jetson

Generate and deploy a CUDA®
executable that performs modulation
classification using features
extracted by the continuous wavelet

Predicted Labels

Deploy Signal
Segmentation Deep
Network on Raspberry Pi

Generate a MEX function and a
standalone executable to perform
waveform segmentation on a
Raspberry Pi™.

Speech Command
Recognition Code
Generation with Intel MK...

Deploy feature extraction and a
convolutional neural network (CNN)
for speech command recognition on
Intel® processors. To generate the

Frequency (Hz

1

o 2 ) ‘
Time (s
-,

Classify ECG Signals
Using DAG Network
Deployed To FPGA

Classify human electrocardiogram
(ECG) signals by deploying a trained
directed acyclic graph (DAG)
network.
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Data Preparation

||‘|||||| Data cleansing and
preparation

9 Human insight

Simulation-
generated data

Signal Processing apps

_ Generate Data

Feature Extraction Techniques

Al Modeling

@ Model design and
tuning

o Hardware

CaCa accelerated training

<3

('"te! NVIDIA.

Accelerate training

Deployment

E\ Embedded devices

% Enterprise systems

¢ Edge, cloud,
desktop

Deploy to targets with
code generation
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