MATLAB EXPO 2021

MATLAB과 Simulink를 이용한 자율 무인항공기(UAV) 개발 및 검증

김종헌

Autonomous UAV Development and Evaluation

- Integrated workflows enabled by MATLAB and Simulink
- Tools to design UAV systems and autonomous applications
- Select appropriate methods for your UAV development tasks
- Evaluating systems through closed-loop simulations with sensor models

Increase in Autonomous UAV Usage

Mapping & Surveying

Inspections & Monitoring

Delivery & Transport

Security & Defense

Challenges in Developing Autonomous UAV Systems & Applications

Complexity of advanced autonomous algorithms

Need of end-to-end workflows

Ensuring system quality and reducing flight risk

Solutions for Developing Autonomous UAV Systems & Applications

Robust tools and features for designing and testing UAV systems and algorithms

Integrated development environment that covers development from ideas to production

Extensive verification and validation tools to evaluate design quality through virtual testing

System Architecture

UAV Plant Modeling: Selecting the Appropriate Fidelity

High-Fidelity
Building UAV

Approximate

Programming UAV

- More Detailed
- Slow
- Modeling effort

Fast

- Easy to model
- Less detailed

Worst-case test

Navigation algorithm test

UAV Plant Modeling: Selecting the Appropriate Fidelity

High-Fidelity Building UAV

Approximate Programming UAV

Physical Modeling

Model construction techniques and best practices, domain-specific modeling, physical units

Vehicle Dynamics

Model aerodynamics, propulsion, and motion of aircraft and spacecraft

Guidance Model

Reduced-order model for UAV

Autonomous UAV Algorithm Development

Autonomous UAV Algorithm Design with Robust Capabilities

Navigation Toolbox

Situational Awareness

Autonomous UAV Algorithm Design with Robust Capabilities

UAV motion planning with advanced path planners

Autonomous UAV Algorithm Design with Robust Capabilities

Planning & Decision

Train policies for trajectory generation using reinforcement learning algorithms

Trajectory tracking controller with nonlinear model predictive control (MPC)

Tracking and Automating Verification and Validation Activities

Example: Automating UAV Testing with Requirements Linking

Requirements linking for traceability

Integrated Simulations with Sensor Models

CuboidPerformance

Unreal Engine® Photorealistic

Rapidly author scenarios and generate sensor data

Realistic graphics to test autonomous algorithms in closed-loop simulations

Example: Building 3D Map using Lidar Point Cloud Simulation

Execute simulation Obtain sensor data

Extract and match features
Register and align point cloud

Detect loop-closures
Create pose graph
Optimize poses

UAV Toolbox, Lidar Toolbox

3D Scene Creation for UAV Simulations

Design 3D scenes for simulating and testing autonomous algorithms

Automatic Code Generation for Hardware Implementation

Connecting to UAV Hardware through MAVLink Protocol

Post-Flight Data Analysis

Key Takeaways

- Download presentation file and investigate linked examples and pages
- Contact us for to learn more details or for trials

Integrated development workflows from prototyping to productization with MATLAB and Simulink

Robust tools/features for autonomous UAV design and simulations with sensor models

Quality through verification & validation tools for traceability, test completeness, and test management/automation

MATLAB EXPO 2021

Thank you

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.