
0

자동차 사이버보안: UN-ECE WP.29 및 ISO 21434에서
정적 코드 분석의 역할

유용출

11

Agenda

▪ Cybersecurity - News, Regulations and Standards

▪ Automotive Cybersecurity & Static Application Security Testing

▪ Catching Up with Cybersecurity in Three Steps

22

Cybersecurity –

News, Regulations and Standards

33

Vehicle Connectivity

44

Automotive Cybersecurity in the News

https://www.wired.com/tag/car-hacking/

April 2020

Vehicle remote control

Privacy breach

Vehicle theft

https://w ww.poandpo.com/new s/hackers-can-take-control-of-your-ford-and-volksw agen-cars-942020422/

55

New Regulations and Guidance

January

2021

UN-ECE WP.29

https://unece.org/press/un-regulations-cybersecurity-and-software-

updates-pave-way-mass-roll-out-connected-vehicles
https://www.nhtsa.gov/staticfiles/nvs/pdf/812333_Cybersecu
rityForModernVehicles.pdf

66

New Standards
ISO/SAE 21434 - Road vehicles — Cybersecurity engineering

June 2021

▪ Standard for Auto industry – ISO 26262

cybersecurity counterpart

▪ Can be used as reference standard

WP.29 and NHTSA

77

UN Vehicle Regulations Enter into Force

The following standards may be applicable:

(a)ISO/SAE 21434
can be used as the basis for evidencing and evaluating …

Paragraph Clauses from ISO/SAE DIS 21434

7.2.2.1. The vehicle manufacturer shall demonstrate to an Approval Authority

or Technical Service that their Cyber Security Management System applies to

the following phases:

Development phase Clauses 9, 10, 11, 15

Production phase Clause 12

Post-production phase Clauses 7, 13, 14, 15

…………

6. Link with ISO/SAE DIS 21434

88

New Cybersecurity Requirements for Automotive in Korea
Secure Coding Guide for Automotive Embedded System

99

Automotive Cybersecurity

&

Static Application Security Testing

From : ISO/SAE DIS 21434

1010

Common Cyberattack Scenarios

Source: Embedded Systems Security, D. Papp et al, IEEE Conf. Sec. Privacy & Trust, 2015.

Programming errors are one major source of vulnerabilities

1111

Common Cyberattack Scenarios

Source: Embedded Systems Security, D. Papp et al, IEEE Conf. Sec. Privacy & Trust, 2015.

Programming errors are one major source of vulnerabilities

Best approach?

Static Analysis Tools

1212

Static Application Security “Testing” (SAST) with Polyspace
Analysis & proof instead of dynamic execution

2. Detect Security Flaws

3. Prove Absence of
Critical Vulnerabilities

1. Enforce Secure Coding Guidelines

1313

1. Enforce Secure Coding Guidelines
CERT C(++) Secure Coding Standard in Polyspace

▪ Coding standard to improve safety, reliability and security

▪ Cross-referenced by MISRA, CWE and others

Polyspace has 100% coverage of automatable rules

Other security-relevant coding standards in Polyspace: MISRA, ISO/IEC TS 17961

1414

2. Detect Security Flaws
Common Weakness Enumeration (CWE) with Polyspace

▪ MITRE categorizes to stop/eliminate those known programming errors before production

▪ Polyspace provides CWE mappings & views for C and C++

CWE Output Interactive Review
CWE Searchable &

Extensive Documentation

CWE-compatible

Polyspace

1515

3. Prove Absence of Critical Vulnerabilities

Considers all inputs & all program states

Polyspace

Code Prover

1616

Static Code Analysis as Recommended Method in ISO 21434

Topic
CAL

1 2 3 4

Requirement-based test ✔ ✔ ✔ ✔

Interface test ✔ ✔ ✔ ✔

Resource usage evaluation ✔ ✔ ✔ ✔

Verification of the control flow and data flow ✔ ✔

Static code analysis ✔ ✔ ✔ ✔

Table E.4 - Methods for verification of integration ([RQ-10-12])

Topic
CAL

1 2 3 4

Use of language subsets ✔ ✔ ✔ ✔

Enforcement of strong typing ✔ ✔ ✔ ✔

Use of defensive implementation techniques ✔ ✔

Table E.9 - Topic list ([RQ-10-20])

Topic
CAL

1 2 3 4

Analysis of requirements ✔ ✔ ✔ ✔

Generation and analysis of equivalence classes ✔ ✔

Boundary values analysis ✔ ✔

Error guessing based on knowledge or experience

Table E.5 - Methods for deriving test cases ([RQ-10-14])

CERT

Polyspace Bug Finder

Polyspace Code Prover

1717

Catching Up with Cybersecurity

in Three Steps

https://kr.mathworks.com/content/dam/mathworks/conference-or-academic-paper/increasing-
resilience-to-cyberattacks-through-advanced-use-of-static-code-analysis.pdf

https://kr.mathworks.com/content/dam/mathworks/conference-or-academic-paper/increasing-resilience-to-cyberattacks-through-advanced-use-of-static-code-analysis.pdf

1818

Cybersecurity

1. Train developers…

– Best practices & coding guidelines to avoid common errors

– Distribute workload on the many, “shift left”

2. Miss “no” defects with static analysis…

– Sound analysis is superior to Fuzz Testing

– Considers all corner cases, guaranteed robustness

3. Automate, Collaborate & Monitor…

– Rigorous “nightly security reviews” without experts

– Supporting security code reviews

– Quality gates to keep your software robust & clean

Quality

Security

Safety

Scalability

This can be

hacked…

Catching up with Cybersecurity in three steps:

1919

Cybersecurity

1. Train developers…

– Best practices & coding guidelines to avoid common errors

– Distribute workload on the many, “shift left”

2. Miss “no” defects with static analysis…

– Sound analysis is superior to Fuzz Testing

– Considers all corner cases, guaranteed robustness

3. Automate, Collaborate & Monitor…

– Rigorous “nightly security reviews” without experts

– Central result storage & review

– Quality gates to keep your software robust & clean

Quality

Security

Safety

Scalability

Catching up with Cybersecurity in three steps:
This can be

hacked…

2020

Follow Secure Coding Guidelines and Practices As You Code

This can be

hacked…

Immediate

feedback

& learning

Polyspace has 99.4% coverage of secure coding guideline CERT-C(++),

identifies common programming errors (CWE) and computes complexity metrics

2121

Fixing Flaws Requires Understanding
Root cause analysis & attack path analysis made easy

▪ I don’t understand the tool warning…

▪ …suppress/ignore ➔ missed vulnerabilities

Event traces:

1. Ease comprehension

– Control decisions to reach vulnerability

2. Support root cause & attack path analysis

– Partial attack path for free

3. Shorten debugging time

– No reconstruction in debugger needed

Interactive review interfaces reduce oversight

Defect

description

Interactive

event trace

Source

with debug

information

Extensive

Documentation

?
Info.

Leakage

2222

Beyond Guidelines: Dedicated Security Checkers
Examples: OpenSSL Heartbleed (lacking data dependency), Jeep Hack (weak RNG)

Wrong variable for length

2323

Beyond Guidelines: Automated Taint Analysis
Defects related to data from an unsecure source

#define SIZE 100

extern int tab[SIZE];

int taintedarrayindex(int num) {

return tab[num];

}

2424

Beyond Guidelines: Automated Taint Analysis
Defects related to data from an unsecure source

#define SIZE 100

extern int tab[SIZE];

int taintedarrayindex(int num) {

if (num >= 0 && num < SIZE) {

return tab[num];

} else {

return -9999;

}

}

Good to Go

#define SIZE 100

extern int tab[SIZE];

int taintedarrayindex(int num) {

return tab[num];

}

2525

Cybersecurity

1. Train developers…

– Best practices & coding guidelines to avoid common errors

– Distribute workload on the many, “shift left”

2. Miss “no” defects with static analysis…

– Sound analysis is superior to Fuzz Testing

– Considers all corner cases, guaranteed robustness

3. Automate, Collaborate & Monitor…

– Rigorous “nightly security reviews” without experts

– Central result storage & review

– Quality gates to keep your software robust & clean

Quality

Security

Safety

Scalability

Catching up with Cybersecurity in three steps:

2626

Why coding guidelines are good, but not enough
Many SAST tools only check “patterns”

Guideline passed != no vulnerabilities: Guideline violation != vulnerability:

Inconsistent arguments to memmove → DoS!

Not checked by CERT/MISRA/…

Valid mixing of different data types → No harm done!

Safe to ignore/justify MISRA violation.

2727

Robustness “Testing” with Guarantees

▪ Through Fuzz testing

– Requires execution on target → slow

– Requires test harness → effort

– E.g., (anti-)random testing, coverage

testing, genetic algorithms

Not exhaustive → may miss vulnerabilities

From : ISO/SAE DIS 21434

2828

Robustness “Testing” with Guarantees

Not exhaustive → may miss vulnerabilities

▪ Through Fuzz testing

– Requires execution on target → slow

– Requires test harness → effort

– E.g., (anti-)random testing, coverage

testing, genetic algorithms

▪ Sound static analysis with proof

– Based on analysis, not execution

– Requires no test harness

– Considers all inputs & states

▪ Boundary values, race conditions, sufficient

checking of user inputs…?

Miss no (checked) bugs → less vulnerabilities

proof

Polyspace

Code Prover

2929

Sound Static Application Security Testing (SAST) with Polyspace
Proof of robustness by analysis instead of evidence from dynamic execution

Considers all inputs & all program states, reduces need for Fuzz Testing

3030

Cybersecurity

1. Train developers…

– Best practices & coding guidelines to avoid common errors

– Distribute workload on the many, “shift left”

2. Miss “no” defects with static analysis…

– Sound analysis is superior to Fuzz Testing

– Considers all corner cases, guaranteed robustness

3. Automate, Collaborate & Monitor…

– Rigorous “nightly security reviews” without experts

– Central result storage & review

– Quality gates to keep your software robust & clean

Quality

Security

Safety

Scalability

Catching up with Cybersecurity in three steps:

3131

Continuous Vulnerability Verification

Developer Branch
Code Review

Integration

Final VnV

Direct developer feedback in IDE to

fix security coding standards (CERT)
Supporting unopinionated code

reviews focusing on vulnerabilities

Automating quality

gate into CI

pipelines

Reporting and

Certification

artifacts

Gerrit

Gerrit

+

CI

3232

Cybersecurity Is Everyone Concern

Developer Branch

Integration

Final VnV

Focus on newly introduced vulnerabilities

Define quality threshold
Populate reports with justification

Polyspace

Access

Collaborative vulnerabilities review
Integrate with Issue tracking tool(Jira, Redmine)

3333

MathWorks Capabilities for Cybersecurity

Security

unit test and verification

Code level
security &
robustness
analysis

System Release

System

Integration and

Test

SW Test

SW

Implementation

SW Design

System Design

System

Requirements
Continuous

System Care

3434

MathWorks Capabilities for Cybersecurity

Code level
security &
robustness
analysis

Req. testing,
Fuzz testing,
Attack Sim.

Intrusion

Detection

Reaction

Int. Tests &
intrusion
detection

System

Requirements

System Design

Allocate
sec reqs,
threat/risk
analysis

SW Design
Secure
design &
modeling

SW

Implementation

Secure code
generation &
deployment

▪ MISRA C/C++

▪ CERT C/C++

▪ CWE

▪ TS 17961

SW Test

System

Integration and

Test

System Release
Continuous

System Care

SOC Data

Analytics,

Design

Updates

3535

Key Takeaways

▪ Achieve Higher Security Level with Polyspace Products

▪ Prove Absence of Critical Vulnerabilities to Reduce Testing Effort

▪ Raise Team Skills to Tackle Vulnerabilities

CERT

36

Thank you

