# MATLAB EXPO 2021

자동차 사이버보안: UN-ECE WP.29 및 ISO 21434에서 정적 코드 분석의 역할

유용출



### Agenda

- Cybersecurity News, Regulations and Standards
- Automotive Cybersecurity & Static Application Security Testing
- Catching Up with Cybersecurity in Three Steps

### Cybersecurity – News, Regulations and Standards



### Vehicle Connectivity



### Automotive Cybersecurity in the News







### **Privacy breach**



Vehicle theft

### New Regulations and Guidance

#### UN Regulations on Cybersecurity and Software Updates to pave the way for mass roll out of connected vehicles

#### 24 June 2020

The automotive sector is undergoing a profound transformation with the digitalization of in car systems that are

#### January 2021

vehicle automation, red mobility. Today, cars ctronic control units and es of software code – four rehter jet –, projected to

rise to 300 million lines of code by 2030.

This comes with significant cybersecurity risks, as hackers seek to access electronic syste data, threatening vehicle safety and consumer privacy.

Two new UN Regulations on Cybersecurity and Software Updates will help tackle these risks by establishing clear performance and audit requirements for car manufacturers. These are the first ever internationally harmonized and binding norms in this area.

The two new UN Regulations, adopted yesterday by UNECE's World Forum for Harmonization of Vehicle Regulations, require that measures be implemented across 4 distinct disciplines:

- Managing vehicle cyber risks;
- Securing vehicles by design to mitigate risks along the value chain;
- Detecting and responding to security incidents across vehicle fleet;
- Providing safe and secure software updates and ensuring vehicle safety is not compromised, introducing a legal basis for so-called "Over-the-Air" (O.T.A.) updates to onboard vehicle software.

The regulations will apply to passenger cars, vans, trucks and buses. They will enter into force in January 2021.

Japan has indicated that it plans to apply these regulations upon entry into force.

The Republic of Korea has adopted a stepwise approach, introducing the provisions of the regulation on Cybersecurity in a national guideline in the second half of 2020, and proceeding with the implementation of the regulation in a second step.

In the European Union, the new reduction on open system y amove mandatory and in wo vehicle types from July 2022 and yill be unuen and all ry for all new vehicle open buced from the 2024.

https://unece.org/press/un-regulations-cybersecurity-and-software updates-pave-wav-mass-roll-out-connected-vehicles



https://www.nhtsa.gov/staticfiles/nvs/pdf/812333\_Cybersecu rityForModernVehicles.pdf

### New Standards ISO/SAE 21434 - Road vehicles — Cybersecurity engineering

|                                                                                                                                                                                                                                                     | DRAFTINTE                       | RNATIONAL STANDAR<br>ISO/SAE DIS 2143       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|
|                                                                                                                                                                                                                                                     | ISO/TC 22/SC 32                 | Secretariat: JISC                           |
|                                                                                                                                                                                                                                                     | Voting begins on:<br>2020-02-12 | Voting terminates on:<br>2020-05-06         |
| Road vehicles — Cy                                                                                                                                                                                                                                  | bersecurity eng                 | ineering                                    |
| ICS: 43.040.15                                                                                                                                                                                                                                      |                                 |                                             |
|                                                                                                                                                                                                                                                     |                                 |                                             |
|                                                                                                                                                                                                                                                     |                                 |                                             |
|                                                                                                                                                                                                                                                     |                                 |                                             |
|                                                                                                                                                                                                                                                     |                                 | Ju                                          |
|                                                                                                                                                                                                                                                     |                                 |                                             |
|                                                                                                                                                                                                                                                     |                                 |                                             |
|                                                                                                                                                                                                                                                     |                                 |                                             |
|                                                                                                                                                                                                                                                     |                                 |                                             |
|                                                                                                                                                                                                                                                     |                                 |                                             |
| THIS DOCUMENT IS A DRAFT CIRCULATED<br>FOR COMMENT AND APPROVAL. IT IS<br>THEREFORE SUBJECT TO CHANGE AND MAY<br>NOT BE REFERRED TO AS AN INTERNATIONAL<br>STANDARD UNTIL PUBLISHED AS SUCH.                                                        |                                 |                                             |
| IN ADDITION TO THEIR EVALUATION AS<br>BEING ACCEPTABLE FOR INDUSTRIAL,<br>TECHNOLOGICAL, COMMERCIAL AND<br>USER PURPOSES, DRAFT INTERNATIONAL<br>STANDARDS MAY ON OCCASION HAVE TO<br>BE CONSIDEERED IN THE LIGHT OF THEIR                          | This document is circulated a   | is received from the committee secretariat. |
| BEOTONSDERED IN THE LIGHT OF THEIR<br>DOTENTIAL TO BECOME STANDARDS TO<br>WHICH REFERENCE MAY BE MADE IN<br>NATIONAL REGULATIONS.<br>RECUPIENTS OF THIS DRAFT ARE INVITED<br>TO SUBMIT, WITH THEIR COMMENTS,<br>NO THFCATION OF ANY RELEVANT PATENT |                                 | Reference num<br>ISO/SAE DIS 21434:2020     |
|                                                                                                                                                                                                                                                     |                                 |                                             |

- Standard for Auto industry ISO 26262 cybersecurity counterpart
- Can be used as reference standard WP.29 and NHTSA

### UN Vehicle Regulations Enter into Force



FOR EUROPE

The following standards may be applicable:

# (a) **ISO/SAE 21434**

can be used as the basis for evidencing and evaluating ...

#### 6. Link with ISO/SAE DIS 21434

#### Paragraph

#### Clauses from ISO/SAE DIS 21434

7.2.2.1. The vehicle manufacturer shall demonstrate to an Approval Authority or Technical Service that their Cyber Security Management System applies to the following phases:

Development phase

**Production phase** 

Post-production phase

Clauses 9, 10, 11, 15 Clause 12

Clauses 7, 13, 14, 15

### New Cybersecurity Requirements for Automotive in Korea

Secure Coding Guide for Automotive Embedded System



### Automotive Cybersecurity & Static Application Security Testing

#### F.2.2 Analysis

Analysis is a systematic and methodical means to research one or more aspects of a work product or of an item or component. Analysis checks for inherent weaknesses, human errors, known and visible system flaws, observable artefacts under the scenario of operation, and overall consistency, correctness and completeness with respect to cybersecurity requirements specifications.

Techniques can include industry standardized or best practice leading tools for identifying known vulnerabilities and weaknesses.

EXAMPLE: Static software code analysis tools that check against MISRA-C and CERT-C.

From : ISO/SAE DIS 21434

MATLAB EXPO

### **Common Cyberattack Scenarios**



### **Common Cyberattack Scenarios**



### Static Application Security "Testing" (SAST) with Polyspace

Analysis & proof instead of dynamic execution



CL15-C Declare file-scope objects or functions th... FLPD2-C Avoid using floating-point numbers when pr... PRE00-C Prefer inline or static functions to funct... DCL37-C Do not declare or define a reserved identi... ZPR30-C Do not declare of valuation f...



10

SEI CERT C violations by rule (Top 10 only)

**Bug Finder Analysis** Find defects defend Numerical Integer division by zero (Impact: High Integer division by zero (Impact: High) Float division by zero (Impact: High) Integer conversion overflow (Impact: High) Unsigned integer conversion overflow (Impact: Low) Integer constant overflow (Impact: Medium) Unsigned integer conversion overflow (Impact: Medium) Sets conservation-ordering division integer to the set Sets conservation overflow (Impact: Medium) ioat conversion overflow (Impact: High) Integer overflow (Impact: Medium) ed integer overflow (Impart: I ow) Unsigned integer overflow (Impact: Low) Float overflow (Impact: Low) Alscorption of float operand (Impact: High) Invalid use of standard library floating point routine (Impact: High) Invalid use of standard library floating point routine (Impact: High) Shift of a negative value (Impact: Low) Shift operation overflow (Impact: Low) Sent operation overnow (unpact: Line) Use of plain char bype for numeric value (Impact: Medium) Bhvise operation on negative value (Impact: Medium) Integer precision exceeded (Impact: Low) Possible invalid operation on boolean operand (Impact: Low) recision loss in integer to float conversion (Impact: Low) Static memory Array access out of bounds (Impact: High) Array access out of bounds (Impact: High)
 Mull pointer (Impact: High)
 Pointer access out of bounds (Impact: High)
 Userelable cast of function pointer (Impact: Hedum)
 Userelable cast of pointer (Impact: Medum)
 Pointer or reference to stack variable leaving scope (Impact: High) Invalid use of standard library memory routine (Impact: High Invalid use of standard library string routine (Impact: High) Arithmetic operation with NULL pointer (Impact: Low) Arithmetic operation with NULL pointer (Impact: Low) Wrong allocated object site for card (Impact: High) Use of path manipulation function without maximum-sized buffer che Buffer overflow from incorrect string format specifier (Impact: High) Destination buffer overflow in string manipulation (Impact: High) Destination buffer underflow in string manipulation (Impact: High) Use of automatic variable as puteriv-family function argument (Impact: High Subtraction or comparison between pointers to different arrays (Impact: High) Data flow Write without a further read (Impact: Low) Non-initialized variable (Impact: High) Non-initialized pointer (Impact: High) Variable shadowing (Impact: Low) Mission return statement (Impact: Low) Unreachable code (Impact: Medium Dead code (Impact: Low) Useless if (Impact: Medium) Partially accessed array (Impact: Low)

#### **2. Detect Security Flaws**

#### 3. Prove Absence of Critical Vulnerabilities



#### 13

### 1. Enforce Secure Coding Guidelines CERT C(++) Secure Coding Standard in Polyspace

Secure Coding

BEREICHSVERKNÜPFUNGEN

Seiten

Dashboard

Home

Android

C C C++

Java

Perl

- Coding standard to improve safety, reliability and security
- Cross-referenced by MISRA, CWE and others

Top 10 Secure Coding Practices

Erstellt von Robert Seacord, zuletzt geändert von Robert Seacord (Manager) am Mär 01, 2011

Validate inputs Validate input from all untrusted data sources. Proper input

validation can eliminate the vast majority of software vulnerabilities. Be suspicious of most external data sources, including command line

arguments, network interfaces, environmental variables, and user controlled

Heed compiler warnings and use static and dynamic analysis tools

MSC00-A, C++ MSC00-A]. Use static and dynamic analysis tools to detect

### Polyspace has 100% coverage of automatable rules

and eliminate additional security flaws.

Architect/Design Software for security policies

Top 10 Secure Coding Practices

files [Seacord 05].

|   | Integers (INT)<br>Floating Point (FLP)<br>Arrays (ARR)<br>Characters and Strings (STR)<br>Memory Management (MEM)<br>Input Output (FIO)                         |                                                                                                                     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|   | Env<br>Sig<br>Err<br>Api FLP02-C Avoid using floating-<br>PRE00-C Prefer inline or s<br>DCL37-C Do not declare or c<br>Mis<br>EXP30-C Do not depend on th<br>PO | boint numbers when pr<br>tatic functions to funct<br>define a reserved identi<br>ne order of evaluation f<br>0 5 10 |
| S | Microsoft Windows (WIN)<br>SEI CERT C++ (131/131)                                                                                                               |                                                                                                                     |

Other security-relevant coding standards in Polyspace: MISRA, ISO/IEC TS 17961

software architecture

curity policies. For



| ■ <mark>SEI CERT C (204/204)</mark>                                                                                    | ^              | Select ru   | lles in category: $\square$ All $\square$ recommendation $\square$ rule |
|------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-------------------------------------------------------------------------|
| Preprocessor (PRE)                                                                                                     |                | Status      | Cate Name                                                               |
| Declarations and Initialization                                                                                        | -              | ⊞ 🗹 Pre     | eprocessor (PRE)                                                        |
| Expressions (EXP)                                                                                                      |                |             | clarations and Initialization (DCL)                                     |
| Integers (INT)                                                                                                         |                | 🗄 🗹 Exp     | pressions (EXP)                                                         |
| Floating Point (FLP)                                                                                                   |                | 🗉 🗹 Int     | egers (INT)                                                             |
| Arrays (ARR)                                                                                                           |                | 🗉 🗹 Flo     | ating Point (FLP)                                                       |
| Characters and Strings (STR)                                                                                           |                | 🗄 🗹 Arr     | ays (ARR)                                                               |
| Memory Management (MEM)                                                                                                |                | 🗄 🗹 Ch      | aracters and Strings (STR)                                              |
| Input Output (FIO)                                                                                                     |                | ⊞ 🗹 Me      | morv Management (MEM)                                                   |
| -Env<br>-Sig                                                                                                           | S              |             | C violations by rule (Top 10 only)<br>stal: 68 violation(s) found       |
| Err DCL15-C Declare file-sco<br>App FLP02-C Avoid using floating                                                       | ope (          | objects or  | functions th                                                            |
| PREOD-C Prefer Inline                                                                                                  | or st          | tatic funct | ions to funct                                                           |
| Col DCL37-C Do not declare                                                                                             | or st<br>or de | efine a re  | served identi                                                           |
| -Col DCL37-C Do not declare<br>-Mis EXP30-C Do not depend o                                                            | or st<br>or de | efine a re  | served identi                                                           |
| Col DCL37-C Do not declare<br>Mis EXP30-C Do not depend o<br>PO                                                        | or st<br>or de | e order of  | served identi                                                           |
| Col DCL37-C Do not declare<br>Mis EXP30-C Do not depend o<br>PO<br>Microsoft Windows (WIN)<br>B SEI CERT C++ (131/131) | or st<br>or de | e order of  | evaluation f<br>0 5 10<br>scenancous (moc)                              |
| Col DCL37-C Do not declare<br>Mis EXP30-C Do not depend o<br>PO                                                        | or st<br>or de | e order of  | f evaluation f<br>0 5 10<br>Scenancous (MSC)<br>SIX (POS)               |



MATIAB EXPO

### 2. Detect Security Flaws

Common Weakness Enumeration (CWE) with Polyspace

- MITRE categorizes to stop/eliminate those known programming errors before production
- Polyspace provides CWE mappings & views for C and C++

|                                        | - a+x                  | Interactive Review                                                                | CWE Searchable &<br>Extensive Documentation                         |
|----------------------------------------|------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------|
| All results 🛛 🖓 New 🗐 🗸 🗇 Show         |                        | Variable trace fx     FreeRTOS_DHCP.c / prvProcessDHCPReplies()     Result Review |                                                                     |
| Family: 🔻 Information                  | 🖉 CWE ID 💦 File        |                                                                                   |                                                                     |
| Defect                                 | 906                    | Status Unreviewed   Enter comment here                                            | Memory comparison of                                                |
| Data flow                              | 101                    | Severity Unset ~                                                                  | padding data                                                        |
| Good practice                          | 741                    | Assigned to Unset                                                                 |                                                                     |
|                                        | 41                     |                                                                                   | memcmp compares data stored in expand all in page structure padding |
| Integer precision exceeded             | 30                     | • Memory comparison of padding data (Impact: Medium) 3                            |                                                                     |
| Sign change integer conversion         |                        |                                                                                   |                                                                     |
|                                        |                        |                                                                                   | Description                                                         |
| Dursigner integer overflow             |                        | Event File Scope Line                                                             |                                                                     |
| Programning                            | - WE-120 CV            | A stream of an union FreeRTOS_DHCP.c prvProcessDHCPRestes()=31                    | The defect occurs when you use the memcmp function to               |
| Format tring specifiers and            |                        | <b>VE-compatik</b>                                                                | The second structures as a whole. In the process, you be adding.    |
| -o mpact: Low                          | DME-683 C              |                                                                                   | ingless data stoled in the structure padding.                       |
| - O mpact: Low                         | CWE-683 CWE-685 pid c  |                                                                                   |                                                                     |
| -O mpact: Low                          |                        | FreeRTOS_ARP.c × FreeRTOS_DHCP.c ×                                                | Structures semigrared with memorp                                   |
| -O mpact: Low                          |                        | /* Map a LHLM structure onto the received data. */                                |                                                                     |
| Memory comparison of padding data      |                        | Die PMessage = (_DHOPMessage_t_+) (_pucl_DPPay.load_) (                           |                                                                     |
| -• mpact: Medium                       |                        | Philipping                                                                        | Result Information                                                  |
| npact: Medium                          |                        |                                                                                   | Group: Programming                                                  |
| Use of remset with size argument       |                        | Polyspace                                                                         | Language: CIC++                                                     |
| Lo Inspact: Medium                     |                        |                                                                                   |                                                                     |
| High Writing to a set qualified object |                        | ( puPHCPManage Cycl Transact Log ID EccePTOS . htt                                | Default: On for handwritten code, off for generals code             |
| O Impact: High                         | CWE-227 CWE-471 bignui | 635                                                                               | Command-Line Syntax: MEMCMP_PADDING_DATA                            |
| Security                               | 2                      | 636 if (memcmp((void *) & pxDHCPMessage->ucClier                                  | Impact: Modium                                                      |
| Static memory                          | 1                      |                                                                                   | CWE ID: 188                                                         |
| ⊞Tainted data                          | 12                     | 638 /* None of the essential options have by                                      |                                                                     |
|                                        |                        | I bio /* None of the essential ontions have by I                                  |                                                                     |

MATLAB EXPO

#### MATLAB EXPO

### 3. Prove Absence of Critical Vulnerabilities



# Polyspace Code Prover









| Resu    | ults List          |              |                       |            | 🗹 Result Details 🛛 🖙 म 🛪                                                                                                                                 |
|---------|--------------------|--------------|-----------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ll resu | lts 🗸 🏹            | New 🗐 🗸 <    | 🛛 🔶 Showing 777/777 🕇 | -          | 🕼 📽 🖳 📕 🕼 K 🗴 focVelocityEncoder_F28069.c / focVelocityEncoder_F28069_step0()                                                                            |
| amily   | ⊮ Inform           | nation       | 🖉 File 🖬              | Class      | Result Review                                                                                                                                            |
| Run-t   | ime Check          |              | 19 25 703             | ^          | Status Unreviewed V Enter comment here                                                                                                                   |
| 🗄 Gra   | ay Check           |              | 19                    |            | Severity Unset ~                                                                                                                                         |
| ⊞ Ora   | ange Check         |              | 25                    |            |                                                                                                                                                          |
| Gre     | een Check          |              | 703                   |            | ✓ Illegally dereferenced pointer ③                                                                                                                       |
| ÷.      | Absolute addres    | s usage      | 1                     |            | Pointer is within its bounds                                                                                                                             |
| ÷.      | Division by zero   |              | 3                     |            | Dereference of local pointer 'meminddst' (pointer to unsigned int 16, size: 16 bits):                                                                    |
| ÷.      | Function not ret   | irning value | 14                    |            | Pointer is not null.                                                                                                                                     |
| ÷.      | Illegally derefere | nced pointer | 20                    |            | Points to 1 bytes at offset 0 in buffer of 1 bytes, so is within bounds (if memory is allocated).<br>Pointer may point to variable or field of variable: |
|         | · · · *            |              | binsearch_u32u16.c    | Global !   | 'focVelocityEncoder F28069 B'.                                                                                                                           |
|         | · • •              |              | ert_main.c            | Global !   |                                                                                                                                                          |
|         | - 🗸 *              |              | ert_main.c            | Global !   |                                                                                                                                                          |
|         | · · · ·            |              | ert_main.c            | Global !   |                                                                                                                                                          |
|         | · • *              |              | focVelocityEncoder    | . Global ! |                                                                                                                                                          |
|         | · · · ·            |              | focVelocityEncoder    | . Global ! | 🔀 Configuration 🛛 Result Details 🕜 Orange Sources 🗔 Specified Constraints                                                                                |
|         | · · · *            |              | focVelocityEncoder    | . Global ! | V Source                                                                                                                                                 |
|         | · · · *            |              | focVelocityEncoder    | . Global ! |                                                                                                                                                          |
|         |                    |              | focVelocityEncoder    | . Global S | ert_main.c × focVelocityEncoder_F28069.c × plook_u32u16_binckan.c ×                                                                                      |
|         | · · · · *          |              | focVelocityEncoder    | . Global ! | 932                                                                                                                                                      |
|         | · · · *            |              | focVelocityEncoder    | . Global ! | 933                                                                                                                                                      |
|         | · · · *            |              | focVelocityEncoder    | . Global ! | 934 /* S-Function (memorycopy): ' <root>/QEP_Index_Pulse_Status'</root>                                                                                  |
|         | · • *              |              | focVelocityEncoder    | . Global ! | 935 {                                                                                                                                                    |
|         | ··· 🗸 *            |              | focVelocityEncoder    | . Global ! | 936 uint16_T *memindsrc = (uint16_T *) (&ielRegister);                                                                                                   |
|         | · • *              |              | focVelocityEncoder    | . Global ! | 937 boolean_T *meminddst = (boolean_T *)                                                                                                                 |
|         | · • *              |              | focVelocityEncoder    | . Global ! | 938 (&focVelocityEncoder F28069 B.indexStatus);                                                                                                          |
|         | ··· 🗸 *            |              | plook_u32u16_binck    | . Global ! | 939 *(boolean T *) (meminddst) = *(uint16 T *) (memindsrc);                                                                                              |
|         | · • *              |              | plook_u32u16_binck    | . Global ! |                                                                                                                                                          |
|         |                    |              | plack u22u16 binck    | Global     | Jao I                                                                                                                                                    |

Considers all inputs & all program states

### Static Code Analysis as Recommended Method in ISO 21434

| Table E.4 - Methods for verification of in | tegration ([RQ-10-12]) |
|--------------------------------------------|------------------------|
|--------------------------------------------|------------------------|

| Tonio                                          | CAL |   |   |   |  |  |
|------------------------------------------------|-----|---|---|---|--|--|
| Торіс                                          | 1   | 2 | 3 | 4 |  |  |
| Requirement-based test                         | ~   | ~ | ~ | ~ |  |  |
| Interface test                                 | ~   | ~ | ~ | ~ |  |  |
| Resource usage evaluation                      | ~   | ~ | ~ | ~ |  |  |
| Verification of the control flow and data flow |     |   | ~ | ~ |  |  |
| Static code analysis                           | ~   | ~ | ~ | ~ |  |  |

Table E.5 - Methods for deriving test cases ([RQ-10-14])

| Tania                                           | CAL |   |   |   |  |  |
|-------------------------------------------------|-----|---|---|---|--|--|
| Торіс                                           | 1   | 2 | 3 | 4 |  |  |
| Analysis of requirements                        | ~   | ~ | ~ | ~ |  |  |
| Generation and analysis of equivalence classes  |     |   | ~ | ~ |  |  |
| Boundary values analysis                        |     |   | ✓ | ✓ |  |  |
| Error guessing based on knowledge or experience |     |   |   |   |  |  |

#### Table E.9 - Topic list ([RQ-10-20])

| Taula                                      | CAL |   |   |   |  |  |
|--------------------------------------------|-----|---|---|---|--|--|
|                                            |     | 2 | 3 | 4 |  |  |
| Use of language subsets                    | ~   | ~ | ~ | ~ |  |  |
| Enforcement of strong typing               | ~   | ~ | ~ | ~ |  |  |
| Use of defensive implementation techniques |     |   | ~ | ~ |  |  |

**Polyspace Bug Finder Polyspace Code Prover** 

### Catching Up with Cybersecurity in Three Steps



https://kr.mathworks.com/content/dam/mathworks/conference-or-academic-paper/increasing-resilience-to-cyberattacks-through-advanced-use-of-static-code-analysis.pdf

### Catching up with Cybersecurity in three steps:

- 1. Train developers...
  - Best practices & coding guidelines to avoid common errors
  - Distribute workload on the many, "shift left"
- 2. Miss "no" defects with static analysis...
  - Sound analysis is superior to Fuzz Testing
  - Considers all corner cases, guaranteed robustness
- 3. Automate, Collaborate & Monitor...
  - Rigorous "nightly security reviews" without experts
  - Supporting security code reviews
  - Quality gates to keep your software robust & clean



### Catching up with Cybersecurity in three steps:

### Train developers...

- Best practices & coding guidelines to avoid common errors
- Distribute workload on the many, "shift left"
- 2. Miss "no" defects with static analysis...
  - Sound analysis is superior to Fuzz Testing
  - Considers all corner cases, guaranteed robustness
- 3. Automate, Collaborate & Monitor...
  - Rigorous "nightly security reviews" without experts
  - Central result storage & review
  - Quality gates to keep your software robust & clean



### Follow Secure Coding Guidelines and Practices As You Code



Polyspace has 99.4% coverage of secure coding guideline CERT-C(++), identifies common programming errors (CWE) and computes complexity metrics

### Fixing Flaws Requires Understanding

Root cause analysis & attack path analysis made easy

- I don't understand the tool warning...
- …suppress/ignore → missed vulnerabilities

Event traces:

- 1. Ease comprehension
  - Control decisions to reach vulnerability
- 2. Support root cause & attack path analysis
  - Partial attack path for free
- 3. Shorten debugging time
  - No reconstruction in debugger needed

#### Interactive review interfaces reduce oversight



### Beyond Guidelines: Dedicated Security Checkers

Examples: OpenSSL Heartbleed (lacking data dependency), Jeep Hack (weak RNG)

| Result Details        | Code Search × Error Call Graph × Review Histo                                                        | ory ×             | 0                                     |                                                                                         |
|-----------------------|------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------|-----------------------------------------------------------------------------------------|
| Variable t            | trace <b>fx</b> Show In Results List View                                                            |                   | d1_both.c / dtls1_process_heartbeat() |                                                                                         |
| Status To             | • fix • CVE-2014-0160. This                                                                          | s is the "heartbl | eed" vulnerability                    | Source                                                                                  |
| Severity Hi           | ligh 🗸                                                                                               |                   |                                       | wifi.c ×                                                                                |
|                       |                                                                                                      |                   |                                       |                                                                                         |
| Assigned to           | ype username or                                                                                      |                   |                                       | 19 return v3;                                                                           |
|                       |                                                                                                      |                   |                                       |                                                                                         |
|                       | between data length and size (Impact: Medium) (<br>ment to 'memcpy' is not computed from actual data |                   | 1ª                                    | 21                                                                                      |
| Data Size arguin      | ment to menicpy is not computed normactual data                                                      | lengui.           | •                                     | 22 char *get_password()                                                                 |
|                       | Event                                                                                                | File              | Scope C                               | 23 {                                                                                    |
| 1                     | Assignment of opaque buffer                                                                          | d1_both.c         | dtls1_process_heartbeat()             | 24 int c max = 12;                                                                      |
| 2                     | Assignment to local pointer 'p'                                                                      | d1_both.c         | dtls1_process_heartbeat()             | 25 int c min = 8;                                                                       |
| 3                     | Assignment to local pointer 'p'                                                                      | d1_both.c         | dtls1_process_heartbeat()             | <pre>264 unsigned int t = time(((void *)0));</pre>                                      |
| 4                     | Assignment to local variable 'payload'                                                               | d1_both.c         | dtls1_process_heartbeat()             | 0 27 srand (t);                                                                         |
| 5                     | Entering if branch (if-condition true)                                                               | d1_both.c         | dtls1_process_heartbeat()             | Q 28 unsigned int len = (rand() % (c_max - c_min + 1)) + c_min;                         |
| 6                     | O Mismatch between data length and size                                                              | d1_both.c         | dtls1_process_heartbeat()             | ansighed int len = (land() * (c_max = c_min + i)) + c_min,                              |
| _                     |                                                                                                      |                   | · · · · · · · · · · · · · · · · · · · | Defect: ID 2: 'rand' is a cryptographically weak PRNG.                                  |
| Source Code           |                                                                                                      |                   | 0                                     | To make your program more secure, use 'CryptGenRandom' (Windows) or 'RAND_bytes' (OpenS |
| d1_lib.c $\times$ d1_ | _both.c ×                                                                                            |                   |                                       | σοί                                                                                     |
| 1483<br>1484          | /* Enter response type, length ar                                                                    | nd conv navle     | ▲                                     | <pre>o 32 unsigned int v10 = rand();</pre>                                              |
| 1485                  | *bp++ = TLS1 HB RESPONSE;                                                                            | и сору рауто      | au '/                                 | <pre>33 int v11 = convert_byte_to_ascii_letter(v10 % 62);</pre>                         |
| 1486                  | s2n(payload, bp);                                                                                    |                   |                                       | 34 password[v9] = v11;                                                                  |
| 1487<br>1488          | <pre>memcpy(bp, pl, payload); bp += payload;</pre>                                                   |                   |                                       | 35 <b>v9++;</b>                                                                         |
| 1400                  | <pre>bp += payload;</pre>                                                                            | u vorioble f      | or longth                             |                                                                                         |
|                       | Vvrong                                                                                               | variable fo       | oriengin                              |                                                                                         |

### Beyond Guidelines: Automated Taint Analysis

Defects related to data from an unsecure source

| Array access with tainted index                   |
|---------------------------------------------------|
| Command executed from externally controlled path  |
| Execution of externally controlled command        |
| Host change using externally controlled elements  |
| Library loaded from externally controlled path    |
| Loop bounded with tainted value                   |
| Memory allocation with tainted size               |
| Pointer dereference with tainted offset           |
| Tainted division operand                          |
| Tainted modulo operand                            |
| Tainted NULL or non-null-terminated string        |
| Tainted sign change conversion                    |
| Tainted size of variable length array             |
| Tainted string format                             |
| Use of externally controlled environment variable |
| Use of tainted pointer                            |

| #define SIZE 100<br>extern int tab[SIZE                                                 | :];                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>int taintedarrayind     return tab[num] }</pre>                                    |                                                                                                                                                                                                                                                                                                   |
| Problems Zasks E Console V<br>Variable trace<br>30 return tab[num];                     | <pre>Correction — Check Range Before Use<br/>One possible correction is to check that num is in range before using it.<br/>#include <stdlib.h><br/>#include <stdlib.h><br/>#define SIZE100 100<br/>extern int tab[SIZE100];<br/>static int tainted_int_source(void) {</stdlib.h></stdlib.h></pre> |
| Severity High<br>Status Fix                                                             | <pre>return strtol(getenv("INDEX"),NULL,10); } int taintedarrayindex(void) {     int num = tainted_int_source();     if (num &gt;= Result Information         re</pre>                                                                                                                            |
| ID 80: Array access with tainted index<br>Array index is from an unsecure source. Index | Default: Off                                                                                                                                                                                                                                                                                      |
| Event Formal parameter is a tainted value Array access with tainted index               | Command-Line Syntax: TAINTED_ARRAY_INDEX Impact: Medium CWE ID: 121, 124, 125, 129                                                                                                                                                                                                                |

### Beyond Guidelines: Automated Taint Analysis

Defects related to data from an unsecure source



### Catching up with Cybersecurity in three steps:

### 1. Train developers...

- Best practices & coding guidelines to avoid common errors
- Distribute workload on the many, "shift left"

Miss "no" defects with static analysis...

- Sound analysis is superior to Fuzz Testing
- Considers all corner cases, guaranteed robustness
- 3. Automate, Collaborate & Monitor...
  - Rigorous "nightly security reviews" without experts
  - Central result storage & review
  - Quality gates to keep your software robust & clean



### Why coding guidelines are good, but not enough

Many SAST tools only check "patterns"



#### Guideline passed != no vulnerabilities:



pxNetworkBuffer->xDataLength -= optlen;

### Guideline violation != vulnerability:

|    |                                         | 🕑 Result Details                                                                         |
|----|-----------------------------------------|------------------------------------------------------------------------------------------|
|    |                                         | ∾ 🖳 📰   ƒх 🗵                                                                             |
| 75 |                                         | 🗄 Result Review                                                                          |
| 76 | /                                       | *                                                                                        |
| 77 | Conversion from unsigned to signed      | Severity Not a defect    Proven correct                                                  |
| 78 | * * * * * * * * * * * * * * * * * * * * | Status No action planned                                                                 |
| 79 | -                                       | Select one or more results to review:                                                    |
| 80 | s32b = 1u;                              | ✓* Overflow                                                                              |
| 81 | v = 16a = u8a; MISRA                    | ▼* MISRA C:2012 10.4 (Required)                                                          |
| 82 | s32a = s32b + u16a Violation            | <b>MISRA C:2012 10.4</b> (Required) 3                                                    |
| 83 | use_int32 ( <u>u16a</u> );              | Both operands of an operator in which the usual arithmetic conversions are performed     |
| 84 |                                         | The left operand of the + operator has essentially signed type while the right operand h |
| 85 | /*************************************  | ′√Overflow ③                                                                             |
| 86 | Conversion from integer sign or         | Operation [+] on scalar does not overflow in INT32 range                                 |
| 87 | ******                                  | , operator + on type int 32<br>left: 1                                                   |
| 88 | value                                   | right: [0 127] or [65408 65535]                                                          |
| 89 | $\frac{f32a}{=} = \frac{s16a}{s};$      | result: [1 128] or [65409 65536]                                                         |
| 90 | $f_{32b} \stackrel{\vee}{=} 42;$        | (result is truncated)                                                                    |
| 91 | f32c = 51u;                             |                                                                                          |
| 92 | use_float32 ( <u>s32a</u> );            | ٠                                                                                        |
|    |                                         |                                                                                          |
|    |                                         |                                                                                          |

Inconsistent arguments to memmove  $\rightarrow$  DoS! Not checked by CERT/MISRA/...

1528 1529

> Valid mixing of different data types  $\rightarrow$  No harm done! Safe to ignore/justify MISRA violation.

### Robustness "Testing" with Guarantees

#### F.2.7 Fuzz Testing

Fuzz testing is a type of testing where <u>large amounts of random data are provided</u> (usually in an automated or semiautomated fashion) as the input to a system to look for weaknesses and vulnerabilities (e.g., failures and coding errors). If the system crashes or departs from the normal defined behavior, the output is reported as an error. Fuzz testing can be done at the system or interface level, or more exhaustively by listing every variable in the software under test and fuzzing random values for each software variable in the code. In the latter approach, the testing is typically highly automated. Fuzz testing can be used to discover, <u>for example, overflows, segmentation and heap errors</u> that have cybersecurity implications. Fuzz testing can be applied to hardware inputs. Fuzz testing can be used as a technique for penetration testing.

#### From : ISO/SAE DIS 21434

- Through Fuzz testing
  - Requires execution on target  $\rightarrow$  slow
  - Requires test harness  $\rightarrow$  effort
  - E.g., (anti-)random testing, coverage testing, genetic algorithms

• Not exhaustive  $\rightarrow$  may miss vulnerabilities

### Robustness "Testing" with Guarantees

- Through Fuzz testing
  - Requires execution on target  $\rightarrow$  slow
  - Requires test harness  $\rightarrow$  effort
  - E.g., (anti-)random testing, coverage testing, genetic algorithms
- Sound static analysis with proof
  - Based on analysis, not execution
  - Requires no test harness
  - Considers all inputs & states
    - Boundary values, race conditions, sufficient checking of user inputs...?

• Not exhaustive  $\rightarrow$  may miss vulnerabilities



Miss no (checked) bugs  $\rightarrow$  less vulnerabilities

MATLAB EXPO

### Sound Static Application Security Testing (SAST) with Polyspace

Proof of robustness by analysis instead of evidence from dynamic execution



Considers all inputs & all program states, reduces need for Fuzz Testing

### Catching up with Cybersecurity in three steps:

- 1. Train developers...
  - Best practices & coding guidelines to avoid common errors
  - Distribute workload on the many, "shift left"
- 2. Miss "no" defects with static analysis...
  - Sound analysis is superior to Fuzz Testing
  - Considers all corner cases, guaranteed robustness

### Automate, Collaborate & Monitor...

- Rigorous "nightly security reviews" without experts
- Central result storage & review
- Quality gates to keep your software robust & clean





Supporting unopinionated code reviews focusing on vulnerabilities

fix security coding standards (CERT)

#### MATLAB EXPO



### MathWorks Capabilities for Cybersecurity



#### MATLAB EXPO



### Key Takeaways

- Achieve Higher Security Level with Polyspace Products
- Prove Absence of Critical Vulnerabilities to Reduce Testing Effort
- Raise Team Skills to Tackle Vulnerabilities



# MATLAB EXPO 2021

Thank you

