MATLAB EXPO

2021

X}-S X} ALO|E{ & QF: UN-ECE WP.29 3 1SO 214340]| A

MY AE BMo| o

o Q=
EE

<) MathWorks

MAT

Agenda

= Cybersecurity - News, Regulations and Standards

= Automotive Cybersecurity & Static Application Security Testing

= Catching Up with Cybersecurity in Three Steps

Cybersecurity —
News, Regulations and Standards

MATLAB EXIPO

MATLAB EXIPO

Vehicle Connectivity

LTE Offload
Media Services
OTA Update

[

Hands Free Voice
Music Streaming

Display Sharing S
Apple CarPlay, b
Androld Auto :
MirrorLink § Phone as Key
e Automated Parking
Tire Pressure Monitoring
Remote Sensors Control

MATLAB E

Automotive Cybersecurity in the News

Hackers can take control of your and
cars - Traction Control turned off!

CHRISTIAN FERNSBY v | April 9, 2020 m

Security flaws have been uncovered in two best-selling cars that could allow computer hackers to gain

MYCAR . .
A Remote-Start access and put safety and privacy at risk.
DRIVE TIME ¢rr‘)p Expc‘;setic
Hackers Can Clone Millions of | &=, ousands of Cars

to Hackers

»._L;...L.L..‘>L._tLKe s
e s y ANDY GREENBERG

ANDY GREENBERG

CAR HACKS
A Flaw in Your

Vehicle remote control

HACKS

CarLats ust a Pair of
sesicolel st These $11 Radio
ANDY GREENBERG Gadgets Can -
e i Privacy breach
B8 | ounches -
! Detroit's First

= ' 'Bug Bounty'f...

ANDY GREENBERG

Vehicle theft

MATLAB E>

New Regulations and Guidance

UN Regulations on Cybersecurity and Software Updates to pave
the way for mass roll out of connected vehicles '%\
Y g\

V9

W

Cybersecurity Best Practicesiis
Modern Vehicles

24 June 2020

The automotive sector is undergoing a
profound transformation with the

= G systems that are
ehicle automation,

‘J an u ary ed mobility. Today, cars
202 1 ctronic control units and
ks of software code - four
esTone Ehter jet -, projected to
rise to 300 millien lines of code by 2030.

This comes with significant cybersecurity risks, as hackers seek to access electronic syste]
data, threatening vehicle safety and consumer privacy.

Two new UN Regulations on Cybersecurity and Software Updates will help tackle these r .
establishing clear performance and audit requirements for car manufacturers. These are the
first ever internationally harmonized and binding norms in this area.

The two new UN Regulations, adopted yesterday by UNECE's World Forum for Harmonization of
Vehicle Regulations, require that measures be implemented across 4 distinct disciplines:

* Managing vehicle cyber risks;

* Securing vehicles by design to mitigate risks along the value chain;

+ Detecting and responding to security incidents across vehicle fleet;

+ Providing safe and secure software updates and ensuring vehicle safety is not
compromised, introducing a legal basis for so-called “Over-the-Air” (O.T.A.) updates to on-
board vehicle software.

The regulations will apply to passenger cars, vans, trucks and buses. They will enter into force in
January 2021,

Japan has indicated that it plans to apply these regulations upon entry into force.

The Republic of Korea has adopted a stepwise approach, introducing the provisions of the
regulation on Cybersecurity in a national guideline in the second half of 2020, and proceeding
with the implementation of the regulation in a second step.

In the European Union, the rfpw tifjn on r it be rjanfat I
vehicle types from July 2022 gnd il b\Cjpree ry fo ew vacikgp ed pfm
L}

2024.

U.S. Department of Transportation

National Highway Traffic Safety @ " NHTSA
Administration ui‘

MATLAB E

New Standards

DRAFT INTERNATIONAL STANDARD

ISO/SAE DIS 21434
1SD/TC22/SC 32 Secretariat: JISC
Voting begins on Voting terminates on:
2020-02-12 2020-05-06

Road vehicles — Cybersecurity engineering

= Standard for Auto industry — ISO 26262
cybersecurity counterpart

1CS: 43.040.15

June 2021

Can be used as reference standard
WP.29 and NHTSA

PEHLESNEXT

[T)llsdm.‘unmm Is circulated as recelved from the committee secretariat. J

MathWs

Reference number
ISO/SAE DIS 21434:2020(E)

P avs
ISO
RSl INTERNATIONAL.

PORTING DOCUMENTATION. © 1S0/SAE International 2020

UN Vehicle Regulations Enter into Force

UNITED NATIONS
ECONOMIC COMMISSION
FOR EUROPE

MATLAB EX

the following phases:
Development phase
Production phase
Post-production phase

_

ISO/SAE 21434

7.2.2.1. The vehicle manufacturer shall demonstrate to an Approval Authority
or Technical Service that their Cyber Security Management System applies to

Clauses 9, 10, 11, 15
Clause 12
Clauses 7, 13, 14, 15

MATLAB EXIPO

New Cybersecurity Requirements for Automotive in Korea

3.3.10 C-FLP-001 85 AAX HAE HHRDO| 719

QI

%8 UHICIE C 2o 3Y Jtoj= ss104 oo

(Secure C Coding Guide for
Automotive Embedded System

3.10.6 =3 HE

e HH 3 HET ok
© 2018 HYUNDAI MOTOR COMPANY & HYUNDAI-AUTOEVER & HYUNDAI-MOBIS. Mathworks L R2019b FLP30-C
All Rights Reserved. Polyspace

Automotive Cybersecurity
&
Static Application Security Testing

F22 Analysis

Analysis i= a systematic and methodical means to research one or more aspects of a work product or of an item or
component. Analysis checks for inherent weaknesses, human errors, known and visible system flaws, observable
artefacts under the scenario of operation, and overall consistency, comeciness and completeness with respect o
cybersecurity requirements specifications.

Technigues can include industry standardized or best practice leading tools for identifying known vulnerabiliies and
weaknesses.

EXAMPLE: Static software code analysis tools that check against MISRA-C and CERT-C.

From : ISO/SAEDIS 21434

MATLAB EXIPO

Common Cyberattack Scenarios

Unknown

Miscellaneous

Direct
Physical

Phvsically

Prekimate

Internet
facing

Local or
Remote
Access

PRECONDITION

Unknown ~ Protocol
N / \
A\

" Normal Use

/

Configuration

Malware

Improper Use of
Cryptography

Application

Reversing

y
. Weak Access Control
" or Authentication i

Eavesdropping,
Sniffing

Control
Hijacking

Firmware

— Hardware

ATTACK METHOD

VULNERABILITY TARGET

Programming errors are one major source of vulnerabilities

Source: Embedded Systems Security, D. Papp et al, IEEE Conf. Sec. Privacy & Trust, 2015.

Unknown

Miscellaneous

Degraded Level
of Protection

Financial
Loss

lllegitimate
Access

Information
Leakage

Integrity
“ Violation

Code
Execution

A Denial of
Service

EFFECT

MATLAB EXIPO

10

Common Cyberattack Scenarios

Unknown £ ; Protacol Unknown

Miscellaneous

Miscellaneous : / \
Configuration #
j s Device 2
“ W Degraded Level
' of Protection

Direct
[Financial
Physical .
legitimate
Physically \ccess
Prekimate

rformation
eakage

Static Analysis Tools

Control & WED _ - B
Hijacking '

Internet
facing ;

Integrity
Violation

——
N

Operating Syse '
Firmware

Code
Execution

Local or
Remote
Access

Denial of
Service

TARGET EFFECT

— Hardware

ATTACK MEETHOD VULNERABILITY

Programming errors are one major source of vulnerabilities

PRECONDITION

Source: Embedded Systems Security, D. Papp et al, IEEE Conf. Sec. Privacy & Trust, 2015.

MATLAB EXIPO

11

MATLAB EXIPO

Static Application Security “Testing” (SAST) with Polyspace

Analysis & proof instead of dynamic execution

SEI CERT C violations by rule (Top 10 only)
Total: 68 violation(s) found

ol DCL15-C Declare file-scope objects or functions th...
Y " Y FLPO2-C Avoid using floating-point numbers when pr...
J -rJ = @ PRE0O-C Prefer inline or static functions to funct...
DCL37-C Do not declare or define a reserved identi...

EXP30-C Do not depend on the order of evaluation f...

@

‘I, Enfores Sectrs Coclirie) Cille

Bug Finder Analysis

(7] Find defocts detat ~

2. Detect Securnity Flaws

= == —
oot S how example.c x

- B

Atscrptin of flost aperand (Impoct: High) 82 static void Pointer_Arithmetic(veid)

vl s of sanderd Sary itege cutine (I High) % {
it of a negatve vave (it Low) G 51 int array[108];
St opecation ovetion (mgac: Low) int i, *p = .
se of plain char type for numeric vakee (Tmpact: Medium) 32 int i, *p = array;
Btwine cpersion o necate vaue (Impact.) 93
Intege precison exceeded (Inpoct: Low) . .)
Possiie Invald opsration on bookean operand (Impact: Low) 94 for (i=9; i< 188; i++) {
recion o n et t foat cooversion) 95 = 8
St memory H
Aty access ot of v (1mgact: High) 96 pHts
ol pintes (mpoct: High)
Poioer access oot of ounds (Imgact: High) 2 }
Unreiable Gast of function pointer (Impact: Medham) 98
Unrehate cst o poiter (Impec: Medum)
o bk v i e s 1) 93 if (get_bus_status() » @) {
s of tancird Waey memary rutin (i get_bus_st z
Invalid se ofstancird Moary strog routine (Impact: Wigh)] = if (get_oil pressure() > @) {
Arthmetic cperaion wth ML ponter (Impac: Low) z
mmwmhd(lmm;" 181 *p = 5; /* Out of bounds */

182 T else

==y Critical Vulnerabilities o

SAraction or ccmparison batween pointers ta dferent arrays (Impact: Hgh) 1es ¥
4 Dymamic memcey
Dt low 186
mm.w;;&:‘;m) 187 i = get_bus_status();
188 .
109 if (iy=e) {“(p-i)=10;}
118
m if ((8 < i) && (i <= 108)) {
112 p=p-1i;
113 *p = 5; /* safe pointer access */

12

1. Enforce Secure Coding Guidelines

= Coding standard to improve safety, reliability and security

= Cross-referenced by MISRA, CWE and others

CERT Secure Coding

@ Seiten
BEREICHSVERKNUPFUNGEN
'] Dashboard
Home

Android

Top 10 Secure Coding Practices

Erstellt von Robert Seacord, zuletzt gedndert von Robert Seacord (Manager) am Méar 01, 2011

Top 10 Secure Coding Practices

Validate inputs |validate input from all untrusted data sources. Proper input

validation can eliminate the vast majority of software vulnerabilities. Be
suspicious of most external data sources, including command line
arguments, network interfaces, environmental variables, and user controlled
files [Seacord 05].

[Heed compiler warnings and use static and dynamic analysis tools }

7 { 58 b= e 4 P A 13

MSCO00-A, C++ MSCO00-A]. Use static and dynamic analysis tools to detect
and eliminate additional security flaws.

[Architect/Design Software for security policies]S"ﬂwa’e architecture
. T scurity policies. For

TTer grryoeT vver 7

—

Polyspace has 100% coverage of automatable rules

&

<

MATLAB E

) SEI CERT C violations by rule (Top 10 only)
~Sig Total: 68 violation(s) found

“EM DCL15-C Declare file-scope objects or functions th...
FLP02-C Avoid using floating-point numbers when pr...

BISEI CERT C (204/204) ~ ||Select rules in category: VAl [vIrecommendation rule
~Preprocessor (PRE) Status Cate... Name
~Declarations and Initializatior Preprocessor (PRE)
~Expressions (EXP) Declarations and Initialization (DCL)
----Inteqers (INT) Expressions (EXP)
~Floating Point (FLP) Integers (INT)
~Arrays (ARR) Floating Point (FLP)
~Characters and Strings (STR) Arrays (ARR)
“Memory Management (MEM) [vICharacters and Strings (STR)
~Input Output (FIO) [v|Memarv Management (MEM)

SEI CERT C++ (131/131)

TEAITEA TE A7Inrd [AFTAFY

Microsoft Windows (WIN)

>

Ap PREQOQ-C Prefer inline or static functions to funct... —
~Col DCL37-C Do not declare or define a reserved ident]... | m——
- Mid EXP30-C Do not depend on the order of evaluation f... : :
0 5 10
i 5 TS CTTar TcuUasS \I I\J\al
~Microsoft Windows (WIN) POSIX (POS)

Other security-relevant coding standards in Polyspace: MISRA, ISO/IEC TS 17961

13

MATLAB EXIPO

2. Detect Security Flaws

= MITRE categorizes to stop/eliminate those known programming errors before production
= Polyspace provides CWE mappings & views for C and C++

O Resuft axn
All results V‘ T New [E+ <= = Showing 906/7,243 ~ @[Jvariable trace| & FreeRTOS_DHCP.c / prvProcessDHCPReplies()

Family:... ¥ Information

= Defect 06 Status ‘Unreviewed v| Enter comment here... Memory Compa rison Of
+Data flow o Severity Unset v padding data
#Good practice Gl . .
= Numerical a Assigned to Unset v memcmp compares data stored in expand all in page

HInteger precision exceeded

7 CWE ID

a0

« File

= Result Review

HSign chan
#HUnsigne
HUnsign
o
='Program
= Format

HUse of
Lo
EWriting to

O Impact: High
+HSecurity

+5tatic memory
+Tainted data

|OMemo comparison of padding data (Impact: Medium) @ &

structure padding

| »

WE-compatible

Polyspace

N

jode

2
1
12

——
CWE-227 CWE-471 ...

{

/% Nena nf thae escantial antinne hawe he

Command-Line Syntax: MEMCMP_PADDING_DATA

e e BA~ A e
RS SE=B SRR

CWE ID: 188

MATLAB EXIPO

3. Prove Absence of Critical Vulnerabilities
v, 4 Polyspace

&, % | [> Run Code Prover v M Stop | &
B Results List x Result Details

C O d e Prov er Al results v| T New [Elv <= 5> Showing 777/777 ~ | ooz || £ > focVelodtyEncoder_F28069.c / focVelocityEncoder_F28069_step0()
Farmnily " Information " File Class ® Resuk Review
=-Run-time Check 19 25 703 | | Status Unreviewed v | |Enter comment here...
o i - . R) -Gra\,-f Check 1 Severity Unset >
Analysis information: Configuration - Unreachable functions - Analysis E-Orange Check 25
Check distribution E-Green Check 703 v pointer &
E-Absolute address usage 1 ointer is within its bounds
- 930
Proven: 93% & Division by zero 3 Dereference of Tocal pointer ‘meminddst’ (pointer to unsigned int 16, size: 16 bits):
" . Pointer is not null.
B-Function not returning value
% I S legaly dereferencedg prem . Points to 1 bytes at offset 0 in buffer of 1 bytes, so is within bounds (if memory is allocated).
Orange (22) J - P ' _ - . Pointer may point to variable or field of variable:
g » 2 ot binsearch_u32ulb.c Global ¢ "focVelocityEncoder_F28069_B'.
. ert_main.c Global ¢
Red (5} SV ert_main.c Global ¢
Green (267) ¥ ert_main.c Global ¢
Y focVelocityEncoder_... Global ¢
v focVelocityEncoder_... Global ¢ % C*ﬁguration Result Details | [2] Orange Sources | [i1] Spedfied Constraints|
T . ! —
theIoc@Encoder_ Global 00 2
v E focVelocityEncoder_... Global ¢ - -
Open results focVelodityEncoder .. (Global ert_miin.c x |focVelodityEncoder_F28069.c | plook_u32ui6_binckan.c x |
ocVelocity coder_... |Globe
. focVelocityEncoder_... Global ¢ ; !
S focVelocityEncoder_... Global ¢ |
. focVelocityEncoder_... Global ¢ /* memorycopy) : '<Root>/QEP_Index Pulse Status'
. Y focVelocityEncoder_... Global ¢ {
Code covered by analysis - F focVelocityEncoder_... Global ! uintlé_T *memindsrc = (uintlé_T *) (sielRegister);
- ® focVelocityEncoder_... Global ¢ boolean T *meminddst = (boolean T *)
- ¥ focVelocityEncoder_... Global ¢ (sfocVelocityEncoder F280€9 B.indexStatus);
Fil v E plook_u32u16_binck... Global ¢ m I* (boolean T *) (meminddst)l = *(uintlé_T *) (memindsrc);
les o ® plook_u32u16_binck... Global ¢ }

Functions

‘ Considers all inputs & all program states

0 50 100

15

Static Code Analysis as Recommended Method in ISO 21434

Table E.4 - Methods for verification of integration ([RQ-10-12]) Table E.5 - Methods for deriving test cases ([RQ-10-14])

Topic
v

Topic
AE

Requirement-based test v v Vv Analysis of requirements v v v
Interface test v Vv Generation and analysis of equivalence classes v Vv
Resource usage evaluation v Vv Boundary values analysis v Vv

Verification of the control flow and data flow Error guessing based on knowledge or experience

Static code analysis v Vv l

Table E.9 - Topic list ([RQ-10-20])

C S| K
C S8 K

~

Use of language subsets

v v v Vv
Enforcement of strong typing v v v Vv
v Vv

Use of defensive implementation techniques

Polyspace Bug Finder
\Polyspace Code Prover)

MATLAB EXIPO

16

Catching Up with Cybersecurity
In Three Steps

MATLAB EXIPO

https://kr.mathworks.com/content/dam/mathworks/conference-or-academic-paper/increasing-resilience-to-cyberattacks-through-advanced-use-of-static-code-analysis.pdf

Catching up with Cybersecurity in three steps:

1. Train developers...
— Best practices & coding guidelines to avoid common errors
— Distribute workload on the many, “shift left”

2. Miss “no” defects with static analysis...

— Sound analysis is superior to Fuzz Testing
— Considers all corner cases, guaranteed robustness

3. Automate, Collaborate & Monitor...
— Rigorous “nightly security reviews” without experts
— Supporting security code reviews
— Quality gates to keep your software robust & clean

This can be
hacked...

Be

‘ Security

MATLAB EXIPO

[_]
Quiality

Safety

Scalability

18

MATLAB EXIPO

Catching up with Cybersecurity in three steps:

This can be
hacked...

- Train developers...

— Best practices & coding guidelines to avoid common errors
— Distribute workload on the many, “shift left”

2 Security
Safety

- Scalability

19

MATLAB EXF

Follow Secure Coding Guidelines and Practices As You Code

1L example.c Lg] sectest.c o7 - O EE Outline 32 [E] Task List (@) Build Targets - O Th|S can be
4 ~ U Sl e Y
5 #define BUFF_SIZE 128 . - z MW hacked...
6 a® stdio.h
v M string.h
8= int secure print(char *str) { B iostream O
9 char dst[BUFF_SIZE]; - # BUFF SIZE o)
0 int r = 0; @ secure_print(char®) : int ‘
1 = o
2 if (sprintf(dst, "%s", str) == 1) { =
3 r += 1;
4 dst[BUFF SIZE-1] = '\@';
5 } v
" Result Details % - O Re.. [olPr.. ¥ T1a. Bc. pr. Wc. X — O I d
U= [Variable trace sectest.c A mme |a.te
= Result Review Risk feedbaCk
Status - [HISHSNEd " |Frter comment here.. These functions can cause buffer overflow, which attackers can & learnin
Severity Unset use to infiltrate your program. g

OUse of dangerous standard function (Impact: Low) @
Using 'sprintf' can cause the destination buffer to overflow.
The output length depends on unknown values that 'sprintf’ cannot control.

Event Line

1 Take the address of variable 'dst'

File Scope

sectest.c secure_print() 12
12

Use of dangerous standard function sectest.c File Scope

Fix

The fix depends on the root cause of the defect. Often the result
details show a sequence of events that led to the defect. You
can implement the fix on any event in the sequence. If the result
details do not show the event history, you can trace back using

CUE M\

Polyspace has 99.4% coverage of secure coding guideline CERT-C(++),
iIdentifies common programming errors (CWE) and computes complexity metrics

20

Fixing Flaws Requires Understanding

| don’t understand the tool warning...

...suppress/ignore =» missed vulnerabilities

Event traces:

1.

2.

3.

Ease comprehension
— Control decisions to reach vulnerability

Support root cause & attack path analysis

— Partial attack path for free

Shorten debugging time
— No reconstruction in debugger needed

Interactive review interfaces reduce oversight

Extensive

Documentation

Defect {
description

Interactive
event trace

Source
with debug
Information

-

MATLAB EX

Mismatch between data length and size
Data size argument is not computed from actual data length

Description

This defect occurs when you do not check the length argument and data buffer argument of memory copying functions such as memcpy, memset, o memmove, o protect a
Risk

If an attacker can manipulate the data buffer or length argument, the attacker can cause buffer averflow by making the actual data size smaller than the length.

This mismatch in length allows the attacker to copy memory past the data buffer to a new location. If the extra memory contains sensitive information, the attacker can no
This defect is similar to the SSL Heartbleed bug

Fix

When copying or manipulating memory, compute the length argument directly from the data so that the sizes match
O Mismatch between data length and size (Impact: Medium) @&
Data size argument to 'memcpy’ is not computed from actual data length.

Event File Scope o
Assignment of opaque buffer d1_both.c dtls1_process_heartbeat()
d1_both.c dtls1_process_heartbeat()

(

Assignment to local pointer 'p’ (
d1_both.c dtls1_process_heartbeat(
(

(

Assignment to local pointer 'p’

=]

Assignment to local variable 'payload’ d1_both.c dtls1_process_heartbeat
Entering if branch (if-condition true) d1_both.c dtls1_process_heartbeat()

© Mismatch between data Ieng%’md size d1_both.c dtls1_process_heartbeat()

3 U R W N =

Source Code

d1_both.c

1478 * message type, plus 2 bytes payload length, plus
1479 * payload, plus padding

1480 w/

1481 M buffer = OPENSSL_malloc(1 + 2 + payload + padding):
1482 bp = buffer:

1483

1484 /* Enter response type, length and copy payload =/
1485 M *bpt+t+ = TLS1_HB_RESPONSE:

1486 M sZni{payload, bp);

1487 memcpy (bp, pl, payload); Info.

1488 bp += payload: Leakage

1489 /% Random padding */

1490 RAND_pseudo_bytes(bp, padding)

1491

1492 [M r = dtlsi_write_bytes{s, TLS1_RT_HEARTBEAT, buffer, 3 + pa

21

MATLAB EXIPO

Beyond Guidelines: Dedicated Security Checkers

Result Details Code Search Error Call Graph Review History (v]

\g\ __| Variable trace UE\ Show In Results List View d1_both.c/ dtls1_process_heartbeat()

Status ‘:TO ix - CVE-2014-0160. This is the "heartbleed" vulnerability
Severity \:High -]
Assigned to ‘ Type username or ... | - | &

O Mismatch between data length and size (Impact: Medium) (2) (&
Data size argument to 'memcpy’ is not computed from actual data length.

Event File Scope
1 Assignment of opaque buffer d1_both.c dtls1_process_heartbeat() -
2 Assignment to local pointer 'p' d1_both.c dils1_process_heartbeat()
3 Assignment to local pointer 'p' d1_both.c dils1_process_heartbeat()
4 Assignment to local variable 'payload' d1_both.c dils1_process_heartbeat()
5 Entering if branch (if-condition true) d1_both.c dils1_process_heartbeat()
6 O Mismatch between data length and size d1 both.c dils1_process_heartbeat()
Source Code) (v]
d1_lib.c d1_both.c »
1483 -
1484 /* Enter response type, length and copy payload */
1485 M *bp++ = TLS1_HB_RESPONSE;
1486 |M s2n(payload, bp);
L memepy (bp, pl, payload);
1488 bp += payload;

K Wrong variable for length

¥ Source

wifi.c X

o

}

return v3;

char *get password()
{
24 int c_max = 12;
int ¢ min = 8;

;1 tsigned int t = time(((void %)0));

@'7. unsigned int len = (rand() % (c_max - c_min + 1)) + c_min;

n s - 33 13 Y

Defect: ID 2: rand’ is a cryptographically weak PRNG.
To make your program more secure, use ‘CryptGenRandom' (Windows) or 'RAND_bytes' (OpenSSL)

o]

aoy
unsigned int v10 = ﬂ();
int vll = convert byte to_ascii_letter(vl0 % 62);
password[v9] = vll;

vo++;

22

MATLAB EXIP

Beyond Guidelines: Automated Taint Analysis

Array access with tainted index

Command executed from externally controlled path
Execution of externally controlled command
Haost change using externally controlled elements
Library loaded from externally controlled path
Loop bounded with tainted value

Memaory allocation with tainted size

FPointer dereference with tainted offset

Tainted division operand

Tainted modulo operand

Tainted NULL or non-null-terminated string
Tainted sign change conversion

Tainted size of variable length array

Tainted string format

Lse of externally controlled environment variable

se of tainted pointer

#define SIZE 100
extern int tab[SIZE];

int taintedarrayindex(int num) {
return tab[num];

Correction — Check Range Before Use

% Droblems L] Tacks Console !,‘r One possible correction is to check that num is in range before using it.
P

#include <stdlib.h>
Variable trace #include <stdio.h>
#define SIZE1l00 100
extern int tab[SIZElee];
static int tainted_int_source(void) {

30 return tab[num];

[=] Result Review return strtol(getenv("INDEX"),NULL,18);
. = 1
Severity High int taintedarrayindex(void) {
i _il int num = tainted_int_source();
Status Fix ’ if (num >=Result Information
re)
} else { Group: Tainted Data
! Ip 80: Array access with tainted indes re Language: C|C++
Array index is from an unsecure source, Index } Default: Off
Command-Line Syntax: TAINTED_ARRAY_INDEX
Event — .
Impact: Medium

1 Formal parameter is a tainted value

CWE ID: 121, 124, 125, 129

Array access with tainted index

23

MATLAB E2

Beyond Guidelines: Automated Taint Analysis

Array access with tainted index

#define SIZE 100
extern int tab[SIZE];

int taintedarrayindex(int num) {
return tab[num];

Correction — Check Range Before Use
One possible correction is to check that num is in range before using it.

#include <stdlib.h>
#include <stdio.h>
#tdefine SIZE1lee 1ee
extern int tab[SIZE1le8@];
static int tainted_int_source(void) {
return strtol(getenv("INDEX"),NULL,10);
}

int taintedarrayindex(void) {
int num = tainted_int_source();
if (num >= @ & num < SIZE10Q) {
return tab[num];
} else {
return -1;
}
}

<

#define SIZE 100
extern int tab[SIZE];

int taintedarrayindex(int num) {
if (num >= 0 && num < SIZE) {
return tab[num];
} else {
return -9999;

}
— Good to Go
Problems %) Tasks Console =’|f Results Summary - Bug Finder 3
Group by :Family - Shaw :.ﬁ.JI results 'r: 7] Mew results

Polyspace Bug Finder did not find any defect or coding rule violation in your code.

MATLAB EXIPO

Catching up with Cybersecurity in three steps:

Be

Quiality

Safety

#Miss “no” defects with static analysis... Security
— Sound analysis is superior to Fuzz Testing
— Considers all corner cases, guaranteed robustness

- Scalability

25

Why coding guidelines are good, but not enough

Guideline passed != no vulnerabilities:

Invalid use of standard library routine (2
Warning: function 'memmove’ is called with possibly invalid argument(s)
* Checks on first argument (destination):
v Not null.
? May not be a memory area that is accessible within the boundary given by the third argument.
Actual value of first argument (pointer to void): points at offset 20 in buffer of [1 .. 20] bytes.
Actual value of third argument (unsigned int 32): full-range [0 .. 232-1]

* Checks on second argument (source):
v Not null.
v Is a memory area that is accessible within the boundary given by the third argument.
Actual value of second argument (pointer to const void): points at offset multiple of 4 in [24 .. 60]
Actual value of third argument (unsigned int 32): full-range [0 .. 232—1]

Source Code

FreeRTOS DHCP.c

FreeRTOS ARP.c aws_secure sockets.c
B o - B)
1526

1527

1528

1529 }

FreeRTOS IP.c =

memmove(pucTarget, pucSource, xMovelen);
pxNetworkBuffer->xDatalLength -= optlen;

Inconsistent arguments to memmove - DoS!
Not checked by CERT/MISRA/...

Guideline violation != vulnerability:

/

MATLAB EXP

cE M

kd Resu

og ks M| fx x

Conversion from unsigne

d to signed

use_int32 (;16a V:

Conversion from integer

W
£32b = 42;

W
f32c = 51lu;

k4
use_float32 (=32z);

(U - MISRA C:2012 10.4 (Required)
Violation ~ MISRA C:2012 10.4 (Required) &
Both operands of an operator in which the usual arithmetic conversions are performed
The left operand of the + operator has essentially signed type whie the right operand h
No loss of Y Overflow & _
. yOperation [+] on scalar does not overflow in INT32 range
sign or _operator + on type int 32
value left: 1

= Result Review
Severty |Nota defect ~ | [Proven correc]
Status :No action planned v:

Select one or more results to review:

v Overflow

right: [0 .. 127] or [65408 .. 65535]
result: [1 .. 128] or [65409 .. 65536]
(result is truncated)

4

m

Valid mixing of different data types - No harm done!
Safe to ignore/justify MISRA violation.

26

MATLAB

Robustness “Testing” with Guarantees

F.2.7 Fuzz Testing

Fuzz testing is a type of testing where large amounts of random data are provided (usually in an automated or semi-
automated fashion) as the input to a system to look for weaknesses and vulnerabilities (e.g., failures and coding errors).
If the system crashes or departs from the normal defined behavior, the output is reported as an error. Fuzz testing can
be done at the system or interface level, or more exhaustively by listing every variable in the software under test and
fuzzing random values for each software variable in the code. In the latter approach, the testing is typically highly
automated. Fuzz testing can be used to discover, for example, overflows, segmentation and heap errors that have
cybersecurity implications. Fuzz testing can be applied to hardware inputs. Fuzz testing can be used as a technique for
penetration testing.

From : ISO/SAE DIS 21434

= Through Fuzz testing ~
— Requires execution on target - slow

— Requires test harness - effort > Not exhaustive - may miss vulnerabilities

— E.g., (anti-)random testing, coverage
testing, genetic algorithms

27

Robustness “Testing” with Guarantees

= Through Fuzz testing
— Requires execution on target - slow
— Requires test harness - effort

— E.g., (anti-)random testing, coverage
testing, genetic algorithms

= Sound static analysis with proof
— Based on analysis, not execution
— Requires no test harness

— Considers all inputs & states

Boundary values, race conditions, sufficient
checking of user inputs...?

> Not exhaustive = may miss vulnerabilities

-’

A/ Polyspace
Code Prover

x p (x - v

‘ operator / on type int 32
gnit| left 10
right: [-21474855 . -1]
result [-10 .. 0]

green = formal proof
never a divide by zero !

Miss no (checked) bugs - less vulnerabilities

MATLAB EXIPO

28

MATLAB EXIPO

Sound Static Application Security Testing (SAST) with Polyspace

%

Analysis information: Configuration - Unreachable functions - Analysis
Check distribution
Proven: 93%
Orange (22)

Green (267)

=== Red (5

&, % | [> Run Code Prover v [Stop | &

Open results

Code covered by analysis

B Results List Result Details X
All results ~| T New [El+ <7 5> Showing 777/777 ~ | ooz || £ > focVeloctyEncoder_F28069.c / focVelocityEncoder_F28069_step0()
Farmnily " Information " File Class & Resukt Review
ELRun-time Check 19 25 703 Status Unreviewed v | |Enter comment here...
-Gra\,r Check 19 Severity Unset -
&-Orange Check 25
E-Green Check 703 v pointer @
E-Absolute address usage 1 ointer is within its bounds
& Division by zero 3 Dereference of Tocal pointer 'meminddst’ (pointer to unsigned int 16, size: 16 bits):
. . Pointer is not null.
=+ Function not returning value
4] Points to 1 bytes at offset 0 in buffer of 1 bytes, so is within bounds (if memory is allocated).
I B Ilegally dereferenced pmnter 20 . . . o
- _ . Pointer may point to variable or field of variable:
ot binsearch_u32ulb.c Global ¢ "focVelocityEncoder_F28069_B'.
. ert_main.c Global ¢
SV ert_main.c Global ¢
¥ ert_main.c Global ¢
o ® focVelocityEncoder_... Global ¢
v focVelocityEncoder_... Global ¢ % C*ﬁguration Result Details | [2] Orange Sources | [i1] Spedfied Constraints|
i focVelocityEncoder_... Global ¢ T
focVelocityEncoder_... Global ¢ - - -
]COLVr‘|0L[tYEﬂLOdr‘I Global 1 ert_miin.c x |focVelocityEncoder_F28069.c x| plook_u32ui6_binckan.c X|
focVelocityEncoder_... Global ¢ }
S focVelocityEncoder_... Global ¢
o focVelocityEncoder_... Global ¢ i memorycopy) : '"<Root>/QEP_Index Pulse_ Status'
v focVelocityEncoder_... Global ¢ {
v focVelocityEncoder_... Global ! uintlé_T *memindsrc = (uintlé_T *) (&ielRegister);
- ® focVelocityEncoder_... Global ¢ boolean T *meminddst = (boolean T *)
T focVelocityEncoder_... Global ¢ (sfocVelocityEncoder F280€9 B.indexStatus);
v E plook_u32u16_binck... Global ¢ I* (boolean T *) (meminddst)l = *(uintlé_T *) (memindsrc);
o ® plook_u32u16_binck... Global ¢ }
L’ F mlaals 020 E bkl Zlah=l ©

Considers all inputs & all program states, reduces need for Fuzz Testing

29

MATLAB EXIPO

Catching up with Cybersecurity in three steps:

1.
e
N Quality
2 ‘ Security
B Safety
#Automate, Collaborate & Monitor...

— Rigorous “nightly security reviews” without experts Scalability
— Central result storage & review
— Quality gates to keep your software robust & clean

30

Continuous Vulnerability Verification

O O

Integration
Developer Branch /

B e G Ve Bt B Db T A ook G Widor e
fo-olm-n S

Code Review
: £Y 's ; ; |L.-||| il — s a8 [-
[e n i e
s e o
" .. -
= Gerrit

Direct developer feedback in IDE to Supporting unopinionated code
fix security coding standards (CERT) reviews focusing on vulnerabilities

MATLAB EXIPO

Reporting and
Certification
artifacts

Tesrag CUCD on wesge

— g < e et
L]
« - Gerrit
Mot ek imkesizr £ wecis 320
Polyspace Analysis Summary

Automating quality
gate into CI
pipelines

31

MATLAB

Cybersecurity Is Everyone Concern

5= Remaining 98 3 Sub-project(s) 0
New Remaining 7 [File(s) 6 e
Assigned To Me Remaining 0 L 429 ———
A Assigned To Me Remaining ne(s) Threshold (5004 =
A& Unassigned Remaining 98 o§ Cyclomatic complexity 6
Remaining 24
@] Run-time Check += Remaining 30 W Coding Rules += Remaining 60
® Red 5
Selectivity ® Orange 20 Density ® To Do 60
88% s o Gray 6 140 % Done 4
® Green 219

Define quality threshold
Populate reports with justification
wi::ww N : /i ‘?MWM 3 ;;GWW"- 0 Enu :‘;' S ' - wr: Om%n
D eV e | O p e r B r a. n C h SN::SW 22394 Rvn»li::‘chtckl Dark QW‘::';"Z;’;E%EQ - o o Ewm'""s"' o -

ol
2 Fami n Gre © @ 8 ow In Lt View - -
B e G Vew Pejes Bubd Db Tt Ande Took Gtwwers Window M oo 5| wheans g amily e oup " € | PS@1 | [#] (] Show In Resuls List View example ¢ / Pointer_Arithmetic() T —
B0 MBI D -0 e - Wem - Lok Wk Db = A 8 mann, 8 gl Warning pointer may be outside ts bounds z Status = -
o 5 SI7194 Numerical v This check may be an issue related o unbounded inpul values P ointer is dersferanced outside bounds expana st m page
CORE- @ B-80B OFa [Smens I) g 517184 Numerical ¢ | M appropriate, applying DRS 10 stubbed function get_bus_status in example c line 107 may oy
» <] e waigned char [16]) 3 5171954 Numerical ¢ remove this orange Le ocky Description
~ =1 s Derefecance of expression (pointer to int 32, size 32 bits) ool
ansik ﬂ 517194 Rersoimisd ¢ Fekaes e not Aaskgood o This chack on a pointer dersference determines whether the pointer is NULL o points outsids s bounds
B 517154 Numerical ¢ Pk o d bytea ut s flet I Dl of 400 byt 0 raey be outikde bouside S The c;‘n:k ::;c:'.(s an}:‘::'m:'yau dereference a pointer and not when you reassign to another pointar or
X] 517195, Data flow U Painter may point to variable o field of variable PEREN powisr o 4 RncEo
X Lo vl 5 Si71%5 Other \ artay. local to function Pointer_Arthmetic o Ticket The check message shows you the pointer offset and buffe size n bytes. A pointer points outsde its bounds
) g TS e 3 wé when the sum of the offset and pointer size exceeds the buffer size
- s e 3 Event File Scope © Comment - Buffer: When you assign an address 1o a pointer, a block of memory is allocated to the pointer. You
— > al 1 Stubbedfunction‘get bus . example.c Pointer_Arithmetc() Charles: G cannot access memory beyond that biack using the pointer The size of this block is the bulfer size
E BITINE, Ot oy § 2 Assignment tolocal variab... example.c Pointer_Arthmetic) Sometines, instead of deie valus, the size can be a rang For instance. f you rate a buffr
& 517185 5 Static memory [R [B o Nttt . dynamicaly using me1oc wih an unknown nput for th size, Polyspace® assumes that the array size
1, L . o, G g — i, cantake the full :ange of values allawed by the incut dta tvos.
; & 517196, 5 Data flow i
1], 3], t.x(3). ev(a). ev(3], 03] i] Source Code °
? g 51719 Othec .
H example.c <
aes_pacmal 4v[o), €¥(3), wV(), +¥O), €XO), €A3L Cx(a), €X(03]): = 517196 x Numerical O = A1 AU VeI U SUUT eSS U USCK (U VETIU SUUTESSEST =
R, AL £ st Statc memory [
& 517196, Data flow 1] » |
£ PN C ev3) 20 24) B eurr] << 3)3 E 517196, Other (M 65 63 .".;':D:E;a,
1] - e g 517196 Data flow [
N T = 3 51719 Other v for : 2Rt cavm el
1 517197 * Numerical ¢ * s
517197 3 Numerical [4
= bus_status() > 0)

1 1F (get_oil_pressure() > 9)

Focus on newly introduced vulnerabilities : et
Collaborative vulnerabilities review
Integrate with Issue tracking tool(Jira, Redmine)

MathWorks Capabilities for Cybersecurity

System
Requirements

System Design

SW
Implementation

Continuous

System Release System Care

System
Integration and
Test

Code level
security &
robustness
analysis

MATLAB BEXIPPO

33

MATLAB EXIPO

MathWorks Capabilities for Cybersecurity

SOC Data
Analytics,
Design
Updates

Continuous

System Release Syt Gare

Allocate — | tv_
sec regs, Yy Int. Tests & ntrysion

threat/risk . . Integratlon and intrUSi'On Detsction
analysis o Test detection

Reaction
\ 4

Secure Req. testing,
design & P S Fuzz testing,
modeling a — Attack Sim.

Secure Code MISRA C/C++ SW Code IeVGI

generation & CERT C/C++ _ security &
deployment CWE Implementation robustness

TS 17961 analysis

34

MATLAB EX

Key Takeaways

Achieve Higher Security Level with Polyspace Products

= Prove Absence of Critical Vulnerabilities to Reduce Testing Effort
« Raise Team Skills to Tackle Vulnerabilities

Check distribution Polyspace
Proven: 93%

Access anlmm
-—

' Q
)/«Orange 22) S
~—==_Red (5)

Define quality threshold
Populate reports with justification

Green (267)

POLYSPACE®

Code Verification Products

Focus on newly introduced vulnerabilities

Collaborative vulnerabilities review
Integrate with productivity tools (Jira, Redmine)

) MathWorks®

35

MATLAB EXPO

2021

Thank you

