MATLAB EXPO 2021

레이더 및 라이다 데이터 처리를 위한 인공지능

정승혁 차장

3 Things We'll Cover Today

Data Synthesis

- Labeling
- Pre-processing
- Model selection and training
- Full system deployment

Insight AI Applications for Radar and Lidar **Challenges** *Common issues engineers face in practice* Interaction AI models for radar and lidar data

What is a lidar sensor and where is AI used ?

Lidar: Light detection and ranging

- Creates 2D or 3D point clouds representing depth using pulsed-light
- Also known as 3D laser scanner, laser scanner

Aerial Imaging and Navigation

Robotics and Augmented Reality

MATLAB EXPO

What are the advantages and disadvantages of lidar sensors ?

• Accuracy drops as range increases

What is a radar sensor and where is AI used ?

Radar: Radio detection and ranging

- Use radio frequency echos to detect objects at a distance
- Estimate position, Doppler, and micro-Doppler.
- Generate images with 4D radar

Target classification

Signal identification

SAR imaging

MATLAB EXPO

What are the advantages and disadvantages of radar sensors?

Long range operations

All weather, night and day

Flexibility

Disadvantages of radar sensors

- Lower resolution than lidar
- Lower azimuthal resolution at longer ranges
- Multipath and clutter cause ghost detections and false detections

What are the common challenges engineers face using AI with radar and lidar ?

- 1. Labeling recorded data for AI training is manual and time consuming
- 2. Little-no recorded data to train models for safety-critical applications
- 3. <u>Unfamiliarity with Al models</u> for radar and lidar
- 4. Unclear how to **pre-process sensor signals** for best results
- 5. Real-world systems require <u>deployment of more than AI model</u>

Challenge

Labeling data is repetitive, manual and time consuming

Repetitive and manual Very little variation frame-frame

Noise *Majority of points not required to train AI model*

Two steps to improving accuracy and efficiency of labeling process

Labelling radar signals can also be done automatically

Simulating radar data in MATLAB and Simulink

Simulating radar data in MATLAB and Simulink

Wide range of data synthesis options for radar systems

Long distance, multi-object operations

Extended objects

High clutter environments

Micro-Doppler signatures

Simulating lidar sensor data in MATLAB and Simulink

Automated Driving Toolbox

Cuboid Environment

UAV Toolbox

3D Scene Creation

What are the common challenges engineers face using AI with radar and lidar ?

- 1. Labeling recorded data for AI training is manual and time consuming
- 2. Little-no recorded data to train models for safety-critical applications
- 3. <u>Unfamiliarity with Al models</u> for radar and lidar
- 4. Unclear how to **pre-process sensor signals** for best results
- 5. Real-world systems require deployment of more than Al model

Challenge

Lack of knowledge on combination of model-type and data format best results

PointPillars: Fast Encoders for Object Detection from Point Clouds

Holger Caesar Lubing Zhou Jiong Yang nuTonomy: an APTIV company

....

.....

hoard: M MV3D [2], A AVOD [1], C ConFuse [13], V VoxelNet [1], F Fustam PointNet [2], S SECOND [20]

Following the tremendous advances in deep learnit sethods for computer vision, a large body of literature h rvestigated to what extent this technology could be appli wards object detection from lidar point clouds [11, 26, , 28, 26, 25]. While there are many similariti ween the modalities, there are two key differences: 1) the point cloud is a sparse representation, while an image is dense and 2) the point cloud is 3D, while the image is 2I As a result object detection from point clouds does not tr ially lend itself to standard image convolutional pipeline Some early works focus on either using 3D convol

What model do l use? There are so many research papers.

How do I train a model? Raw sensor data or transformed.

MATLAB EXPO

MATLAB provides a curated library of models with different inputs and styles

Object Detection 3D bounding box detection and classification

Curated Models

Semantic Segmentation Classify each data point with label

Curated Models

- 1. SqueezeSeg v2
- 2. PointSeg
- 3. SalsaNext
- 4. PointNet
- 5. PointNet++

Import models from open source AI frameworks

A MATLAB R2021.	- providence tax	- a ×
HOME	PLOTS 4995 INCEDITOR INSERT FIGURE MEW	😋 👘 🔁 😓 🕞 🕐 🕅 Search Decimentation 🔗 🔔 Aut
	A formare and a formal a second take a secon	
	Harter Ha	×
4 + 3 3 2	C + Users + anehemia + OneDrive - MotHVorks + Documents + MATLAB + Ecomples + R2021a + deepleaming_shared + Lidar2DObjectDetectionUsingPointPilarsExample	• •
styleTrans/eD	SeeS webenas Define - Methin Us Documents MERLAP, Dampes KRU to dee Jeaning, Stareh Liard Diget Deecton BrigPont Pitard complexited best on the promovies can be mis enormal 1 Liar 3006 ject Detection LingPont Pitards amplemb 11 unitided mis * 11 +	(B 8) ×
	Lidar 3-D Object Detection Using PointPillars Deep Learning	
	Load Data	4
		1
1	<pre>lidarURL = 'https://www.mathworks.com/supportfiles/lidar/data/WPI_LidarData.tar.gz';</pre>	
2	lidarData = downloadWPIData(outputFolder, lidarURL);	
	Load the 2 D bounding her labels	
	Load the 3-D bounding box labels.	
2	load('WPI_LiderGroundTruth_mat'_'bboxGroundTruth'):	
4	Labels = timetable2table(bboxGroundTruth):	
5	Labels = Labels(:,2:end);	
	Display the full-view point cloud.	
6	figure	
7	ax = pcshow(lidarData{1,1}.Location);	
8	set(ax, XL1m, [-50 50], YL1m, [-40 40]);	
10	zoom(ax,z.s);	
10	axis 011,	

1114

UTF-8

Tune hyperparameters and reproduce training experiments

Experiment Manager										
EXPERIMENT MANAGER								?		
Image: Save New File Image: Save Layout File Image: Save Layout File Image: Save Confusion Plot Matrix File Image: Save File										
 Baseline Establishment 	✓ Kesuit Details									
Sweep Initial Learning Rate	Baseline Tuning	2/7/20	20, 12:53:36 PM					7/16 Trials		
Baseline run	(<u>view Experiment</u>	<u>Source</u>)	0	Complete 7	A 3	Stopped 0	Erro	r 0		
 Baseline Luning Baselité (Runping) 			0	Running 1	<u>►</u> (Queued 8	× Can	celed 0		
Harras Initial Learning Pate Pange										
Sweep Learning Rate Conv Size and										
Add Conv-Batch-ReLu Banks	Trial Status	Progress	Elapsed Time	myInitialLearn	convFilterSize	Training Accu	Training Loss	Validation Ac		
	1 🥑 Comp	ete 100.09	% 0 hr 0 min 16 sec	1.0000e-6	3.0000	12.5000	2.6441	10.		
Train Validation Split Study	2 🔮 Comp	ete 100.0	% 0 hr 0 min 15 sec	1.0000e-5	3.0000	25.7813	2.1228	20.		
	3 🔮 Comp	lete 100.09	% 0 hr 0 min 14 sec	0.0001	3.0000	64.8438	1.0878	42.		
	4 🔮 Comp	ete 100.09	% 0 hr 0 min 16 sec	0.0005	3.0000	90.6250	0.4648	49.		
	5 📀 Comp	lete 100.09	% 0 hr 0 min 15 sec	1.0000e-6	4.0000	11.7188	2.4967	6.		
	6 📀 Comp	ete 100.09	% 0 hr 0 min 15 sec	1.0000e-5	4.0000	23.4375	2.1213	14.		
	7 📀 Comp	ete 100.09	% 0 hr 0 min 17 sec	0.0001	4.0000	72.6563	1.0283	39.		
	8 O Runni	ng 30.7%	0 hr 0 min 4 sec	0.0005	4.0000					
	9 👱 Queu	ed 0.0%		1.0000e-6	5.0000					
	10 👱 Queu	ed 0.0%)	1.0000e-5	5.0000					
	11 🔄 Queu	ed 0.0%		0.0001	5.0000					
	12 🔄 Queu	ed 0.0%		0.0005	5.0000					
	13 🔄 Queu	ed 0.0%		1.0000e-6	6.0000					
	14 🔄 Queu	ed 0.0%		1.0000e-5	6.0000					
	15 🔄 Queu	d 0.0%		0.0001	6.0000					
	16 🖆 Queu	d 0.0%		0.0005	6.0000					

What are the common challenges engineers face using AI with radar and lidar ?

- 1. Labeling recorded data for AI training is manual and time consuming
- 2. Little-no recorded data to train models for safety-critical applications
- 3. <u>Unfamiliarity with Al models</u> for radar and lidar
- 4. Unclear how to **pre-process sensor signals** for best results
- 5. Real-world systems require deployment of more than Al model

Pre-processing radar data can improve performance of network

You can make the trade-off between pre-processing approaches

Time to test your ability to classify micro-Doppler returns ...

Ground truth – synthesized micro-Doppler

Is this a pedestrian or a bicyclist?

Poll

Is this a pedestrian or a bicyclist?

- A. One Pedestrian
- B. One Bicyclist
- c. One of each
- D. Not sure

And the answer is

Is this a pedestrian or a bicyclist?

- A. Pedestrian
- B. Bicyclist
- c. One of each
- D. Not sure

This is a pedestrian and a bicyclist

This one is a bit trickier. The network gets the correct answer

Example Link

Ground truth – synthesized micro-Doppler

What are the common challenges engineers face using AI with radar and lidar ?

- 1. Labeling recorded data for AI training is manual and time consuming
- 2. Little-no recorded data to train models for safety-critical applications
- 3. <u>Unfamiliarity with Al models</u> for radar and lidar
- 4. Unclear how to **pre-process sensor signals** for best results
- 5. Real-world systems require deployment of more than Al model

Challenge

Deploying AI model and application code prototype to a larger system

Multiple options for deployment platform CPU/GPU/FPGA

System requires AI model + pre and post processing


```
A MATLAB R2020b
                                                                                                                                                                                 \times
                                                                                                              6 6 0 6
                                                                                                                                     E ? Search Documentation
                                                                                                                                                                            Q
                                                                                                                                                                               4
                                                                                                                                                                                   Minhaj 🔻
    HOME
                   PLOTS
                                  APPS
                                               LIVE EDITOR
                                                                   INSERT
                                                                                   VIEW
                                                                                          ###
C
                 ġ
                         P
                                      1
                                                                                                                                                                       A B
C D
         Ŧ
                                                   PID
                                                                 -alp-
                                                                             -
                                                                                                                                 *
  8
                                                                                                       5
                                   Curve Fitting
                                                                                                                                                      Linear System
                                                 PID Tuner
                                                                                      MATLAB Coder
                                                                                                   Distribution
                                                                                                                  Control
                                                                                                                               Control
                                                                                                                                           Flight Log
                                                                                                                                                                      Model
       Get More
                Install
                       Package
                                                               Signal
                                                                            Image
Design
                                                                                                                System Desi...
                                                                                                                             System Tuner
                                                              Analyzer
                                                                          Acquisition
                                                                                                      Fitter
                                                                                                                                            Analyzer
                                                                                                                                                         Analyzer
                                                                                                                                                                      Reducer
         Apps
                 App
                         App
 App
                                                                                                                                                                                          Ā
             FILE
                                                                                                        APPS
🗘 🏟 🖬 🔊 🔊
                     C: Visers > mpalakka > OneDrive - MathWorks > Documents > MATLAB > Examples > R2020b > shared_driving_fusion_lidar > TrackVehiclesUsingLidarExample >
                                                                                                                                                                                          -
Live Editor - C:\Users\mpalakka\OneDrive - MathWorks\Documents\Demos\DetectClassifyAndTrackOrientedBoundingBoxInLidarExample\DetectClassifyAndTrackOrientedBoundingBoxInLidarExample.mlx
                                                                                                                                                                                      ⊛ x
   DetectClassifyAndTrackOrientedBoundingBoxInLidarExample.mlx 🛛 💥
                                                               TrackVehiclesUsingLidarExample.m X +
                                                                                                                                                                                      150
           filterInitFcn = @helperMultiClassInitIMMFilter;
  151
  152
           % A joint probabilistic data association tracker with IMM filter
           tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn,...
  153
                                                                                                                                                                                        4
                'TrackLogic', 'History',...
  154
                'AssignmentThreshold', assignmentGate, ...
                'ClutterDensity'.Kc....
  156
                'ConfirmationThreshold', confThreshold,...
  157
                'DeletionThreshold', delThreshold, 'InitializationThreshold', 0);
  158
  159
  160
           allTracks = struct([]);
           time = 0;
  161
           dt = 0.1;
  162
  163
           % Define Measurement Noise
  164
           measNoise = blkdiag(0.25*eye(3),25,eye(3));
  165
  166
           numTracks = zeros(numFrames, 2);
  167
         The detected objects are assembled as a cell array of objectDetection objects using the helperAssembleDetections function.
           display = helperLidarObjectDetectionDisplay;
 168
           initializeDisplay(display);
 169
 170
           for count = 1:numFrames
 171
                time = time + dt;
 172
 173
               % Get current data
```

We can improve our results when we fuse the two sensors

MATLAB EXPO

Let's take a closer look ...

Fused tracks more accurate than individual sensor tracks

<u>Sensor Fusion and Tracking Toolbox</u>[™]: designing, simulating and testing systems that fuse data from multiple sensors

How MATLAB and Simulink help create AI-driven radar and lidar processing systems

MATLAB EXPO 2021

감사합니다

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.