MATLAB EXPO

자율 이동로봇을 위한 센서퓨젼 및 네비게이션 알고리즘 개발 김종헌, MathWorks

Smart Autonomous Package Delivery

Capabilities of an Autonomous System

Some common Perception tasks

- Design localization algorithms
- Design environment mapping algorithms
- Design SLAM algorithms
- Design fusion and tracking algorithms
- Label sensor data
- Design deep learning networks
- Design radar algorithms
- Design vision algorithms
- Design lidar algorithms
- Generate C/C++ code

Capabilities of an Autonomous System

- Visualize street maps
- Connect to HERE HD Live Map
- Design local and global path planners
- Design vehicle motion behavior planners
- Design trajectory generation algorithms
- Generate C/C++ code

Capabilities of an Autonomous System

Some common Control tasks

- Connect to recorded and live CAN data
- Design reinforcement learning networks
- Model vehicle dynamics
- Automate regression testing
- Prototype on real-time hardware
- Design path tracking controllers
- Design model-predictive controllers
- Generate production C/C++ code
- Generate AUTOSAR code
- Certify for ISO26262

In This Talk, You Will Learn

Reference workflow for autonomous navigation systems development

MATLAB and Simulink capabilities to design, simulate, test, deploy algorithms for sensor fusion and navigation algorithms

- Perception algorithm design
- Fusion sensor data to maintain situational awareness
- Mapping and Localization
- Path planning and path following control

Many Options to Bring Sensor Data to Perception Algorithms

Live Data Can Be Augmented for a More Robust Testbench

Simulate sensors

Autonomous Systems Can Track Objects from Lidar Point Clouds

Track Objects Using Lidar: From Point Cloud to Track List

Track surrounding objects during automated lane change

2D radar Can Be Used to Track Position, Size, and Orientation

Fusing Multiple Sensor Modalities Provides a Better Result

Radar and Lidar Fusion Can Increase Tracking Performance

Radar and Lidar Fusion Can Increase Tracking Performance

Estimate the Pose Using Monte Carlo Localization

What is the World Around Me?

Egocentric occupancy maps

Dynamic Environment

- Support dynamic environment changes
- Synchronization between global and local maps

What is the World Around Me? 3D Occupancy Map

Where Am I in the Unknown Environment?

Simultaneous Localization and Mapping (SLAM)

Build a map of an unknown environment while simultaneously keeping track of robot's pose.

Simultaneous Localization and Mapping SLAM Map Builder App (2D only)

App enables more interactive and user-friendly workflow

Simultaneous Localization and Mapping 3D Lidar SLAM

Simultaneous Localization and Mapping 3D Monocular Visual SLAM (ORB-SLAM)

Plan a path from start to destination

MATLAB EXPO

📣 MathWorks

Plan a Path from Start to Destination

Urban Driving Needs Planning on Multiple Levels

Global, behavior, and local planners

Generate optimal trajectories for local re-planning and merge back with the global plan

Simulate shortest path to change lanes on a highway

Simulate trajectory generation and the lane change maneuver

Mission planning for UAV leads to last mile delivery

Choose a path planner based on your application

10 20 30 40 50 60 X (meters)

Compute Control Commands for Ground Vehicles

Compute linear and angular velocity commands for a mobile robot

Send Control Commands to the Vehicle to Follow the Planned Path

Calculate the steering angle and vehicle velocity to track the trajectories

Control Lane Change Maneuver for Highway Driving

Longitudinal and Lateral Controllers to adjust the acceleration and steering

Simulate High-Fidelity UAV Model with Waypoint Following

Simulate GPS and IMU sensor models

Approximate High-Fidelity Model with Low-Fidelity Model

0.4 0.3 6.3 High Fidnity Respon Low Fidelity Response 75 75.6 78 76.5 77 77.5 78.5 **Roll Angle** Air Speed Step Response 12.3 18.6 12.4 18.2 37.7 Low Fidelity Response Hob Fidality Reiz 20 171 72 73 74 76 Air Speed ieight Step Respons

Roll Angle Step Response

600

Height

AirSpeed

RollAngle

400

200

MATLAB EXPO

Low Fidelity Respon - High Fidnity Response

Full Model Based Design Workflow for Autonomous Systems

Verification & Validation

There Are Many Resources to Get Started with

Product pages

Tech Talks in Youtube

Openi Live Script

MATLAB EXPO

Open Live Solut

In This Talk, We Learnt About..

34

Thank You !!

