donghan.lee/2020-06-25 15:03:27/Official Class

Respected Company with BIC Technology

모델기반설계를 이용한 자율주행 소프트웨어 개발 적용 사례

2020. 7. 16 MANDO ADAS BU 이동한 책임

donghan.lee/2020-06-25 15:03:27/Official Class

I. Challenges

Development Platform

- Linux / ROS (Robotic Operating System)
- Easy to implement application software components with ROS

Simulation

2

- Unit test for each software component
- Test scenario generation
- Easy to utilize external resources

Model Predictive Control

- Optimization solver
- Code generation

II. Simulink models with ROS interface

Development Environment

SW Architecture based on Linux & ROS

- Two ways to develop Application SW
 - Planning / Control : with MATLAB

- Perception / Localization : with C++

II. Simulink models with ROS interface

Pros

- Reduce the development cycle
- Improve reusability
- Easy to conduct unit / integration tests
- Cons

4

- Difference from actual environment
- Model Configuration

donghan.lee/2020 00 25 15:03 27/Official Clas

Matlab/Simulink Environment

II. Simulink models with ROS interface

Issues

• NOT correlate automatically generated ROS message bus with pre-defined ROS message

XX SP BUS Info	
% ROS_PI_SP_BUS_50ws	
PI_SP_BUS_50ms.m_s32_SPStatus = ROS_PI_SP_BUS_50ms.MS32SPStatus;	
PI_SP_BUS_5Oms.m_s32_SPMode = ROS_PI_SP_BUS_5Oms.MS32SPMode;	
VX Feelefe	
% Egolnfo.m_sEgoPos	
PI_SP_BUS_50ms.m_sEgoInfo.m_sEgoPos.m_d_PosS = ROS_PI_SP_BUS_50ms.MSEgoInfo	.NSEgoPos.MDPosS;
PI_SP_BUS_50ws.m_sEgoInfo.n_sEgoPos.n_d_PosN = ROS_PI_SP_BUS_50ws.MSEgoInfo	.NSEgoPas.MDPasN;
	100 B 100 U
PILSPLBUS15Ums.mlstgointo.nlstgoPos.nldlPosX = HUS1PILSPlBUS15Ums.MStgointo	.NSEgoPos.MUPosX;
PLISP BUS 50ms m sEpolofo a sEpolos a d PosV = 80S PLISP BUS 50ms MSEpolofo	MSEgoPos MDPosV:
PI_SP_BUS_50ms.m_sEgoInfo.m_sEgoPos.m_d_Phi = ROS_PI_SP_BUS_50ms.MSEgoInfo.	MSEgoPos.NDPhi;
PI_SP_BUS_50ms.m_sEgoInfo.m_sEgoPos.m_d_Heading = ROS_PI_SP_BUS_50ms.MSEgoI	nfo.MSEgoPos.NDHeading;
Xtgointo.m_stgoVel DL CD DUG FD-sForla (sForla)	0
Pi_SP_DUS_SUMS.m_SCg0into.n_SCg0vei.n_d_vei = HUS_Pr_vSP_DUS_IUMS.MUVenicie	speedwps,
PL SP BUS 50ms.m.sEgnlnfo.m.sEgnVel.m.d Yawrate = BOS Pr VSP BUS 10ms.MOVaw	RateBadS;
%EgoInfo.m_sEgoDyn	
PI_SP_BUS_50ms.m_sEgoInfo.m_sEgoDyn.m_d_Accel = 0;	
PI_SP_BUS_5Oms.m_sEgoInfo.m_sEgoDyn.m_d_SASAng = 0;	
DI 20 DIC EDes a servicia a servica a di Massidan a Di	
<pre>rilor_buoloums.mlscguthtu.mlscgubyn.mldlWheelXhg = U;</pre>	

- 'ROS Get Parameter' block makes the computational problem
 - \rightarrow Resolved by the initialization with 'Enable block'

5

Simulation Model

- Goal : Planning node evaluation in diverse driving conditions
- Requirements
 - Easy to generate driving scenarios (Agents, Road attributes, etc.)
 - Work with ROS nodes
 - Take into account interaction between agents in the driving scene

Graphic User Interface Scenario File/ROS Model Selection Road Network Graph Control Simulation Speed 0.5 C:\Users\Mando\Deskto Online Simulation Mode **Run Offline Simulation** Driving Scenario File ROS Target AutonomousDrivingWith 6.50 **Run Online Simulation** External ROS Model Simulation Time Simulink ROS Master URL localhost **ROS** Connected SampleTime 0.1 **Simulation Execution** ROS Time = 162 Simulink Model Time = 6.5 Time Difference = 0 Duration of Simulation = 2.2951 Execution Time = 0.00877 **ROS** Initialization **Simulation-Mode Selection** 100 80 60 40 20 X(m) 0 -20 -40 -60 -80 50 0 100 -50 -100 Y (m)

Driving Scenario Designer

- Easy to build driving scenarios
- Export information regarding road-networks and actors

Test case

- MRM(Minimum Risk Maneuver) / Unplanned Event
- Case 1. within the critical situation : Slow down inside the lane

• Case 2. without the critical situation : Lane change maneuvers

Issues

• Repetitively simulation features on different driving conditions in a given scenario (Automated Testing)

2015 13:58:48 GMT+0200 (CEST)	✓ Passes	1	1				
				✓ Passes	1	4	27
2015 13:59:17 GMT+0200 (CEST)	! Warning	0	0	! Warnings	0	0	0
	O Failures	0	0	Failures	0	0	0
E 15:03.2	Skipped	0	0	Skipped	0	0	0
	Total	1	1	Total	1	4	27
	01525 15:03.27 112.20. 	01522-112.20 9 Failures 9 Skipped Total	01 Early 0 01 Failures 0 02 Skipped 0 02 Total 1	01 Early 0 0 01 Failures 0 0 05 15:03:21 0 0 0 Skipped 0 0 0 Total 1 1	0150112.220 Failures000 Skipped000 Skipped111 Total1	O FailuresOOOO SkippedOOOO SkippedIII	O FailuresOOO FailuresOOO SkippedOOTotal11

- Interactions with other agents in a given scenario (e.g. Intersection / Merge-in / Merge-out)
 - \rightarrow Multi-agent simulation will be implemented based on the shipping demo. In Stateflow

Model Predictive Control

- Pros
 - Any objective
 - Any model
 - Optimization with constraints
- Cons
 - Computationally demanding in the general case
 - Stability & Feasibility are not guaranteed

Constrained finite time optimal control problem

$$\begin{split} \min_{\kappa_{0:N-1|t}(\cdot)} & \sum_{k=0}^{N-1} E\left[J(x_{k+1|t}^c, x_{k+1|t}^{ref}, u_{k|t}^c, u_{k-1|t}^c)\right] \\ \text{subject to:} & x_{k+1|t}^c = f^c(x_{k|t}^c, u_{k|t}^c, w_{k|t}^c), \\ & u_{k|t}^c = \kappa_{k|t}(x_{k|t}^c), \\ & \left[u_{k|t}^c, u_{k-1|t}^c\right] \in \mathcal{U}, \\ & \left[u_{k|t}^c, x_{k|t}^e\right] \leq 0, \\ & \left(k = 0, \dots, N-1\right) \\ & x_{0|t}^c = x_t^c, \quad u_{-1|t}^c = u_{t-1}^c. \end{split}$$

- Three different approaches depending on characteristics of uncertainty
 - Nominal MPC: $g(x_k^c, x_k^e) \leq 0$ with $w_i^* = \bar{w}_i^* \quad \forall i < k$
 - Stochastic MPC: $\mathbf{P}(g(x_k^c, x_k^e) \le 0) \ge 1 \epsilon_k \text{ with } w_i^* \sim p_i^* \quad \forall i < k$
 - Scenario-based MPC: $g(x_k^{c(s)}, x_k^{e(s)}) \leq 0 \text{ with } w_i^* = w_i^{*(s)} \quad \forall s = 1, \dots, S, \quad \forall i < k$

Issues

'Adaptive MPC' has no MVRate-Constraints in Online Features

Block Parameters: Adaptive MPC Control	roller1	
Adaptive MPC (mask) (link)		
The Adaptive MPC Controller block le predictive controller defined in the Mo	ts you design and simulate an adaptive model odel Predictive Control Toolbox.	
Parameters		
Adaptive MPC Controller mpcobj		
Initial Controller State xmpc		
General Online Features Oth Prediction Model	ers s (model expects 3-D signals)	
Constraints	Upper M/ limite (umpy)	
Lower OV limits (unin)	Upper OV limits (umax)	
Custom constraints (E, F, G, S)		
Weights		
OV weights (y.wt)	MV weights (u.wt)	
MVRate weights (du.wt)	Slack variable weight (ecr.wt)	
Prediction and Control Horizons		
Adjust prediction horizon (p) and	d control horizon (m) at run time	
Maximum prediction horizon 10	×	
1	OK Canadi Hala	

- Hard to define a problem formulation in the model
 - Script-based problem formulation option
 - Better for the design flexibility

```
Yalmip example code
Plant = ss(tf(1,[1 0 0]));
A = Plant.A;
B = Plant.B;
C = Plant.C;
D = Plant.D;
[nx,nu] = size(B);
T_5 = 0.1;
Gd = c2d(Plant,Ts);
Ad = Gd.A;
Bd = Gd.B;
% Define data for MPC controller
N = 10;
0 = 10;
R = 0.1;
% Avoid explosion of internally defined variables in YALMIP
yalmip('clear')
% Setup the optimization problem
u = sdpvar(repmat(nu,1,N),repmat(1,1,N));
x = sdpvar(repmat(nx,1,N+1),repmat(1,1,N+1));
% Define simple standard MPC controller
% Current state is known so we replace this
x\{1\} = currentx;
constraints = [];
objective = 0;
for k = 1:N
    objective + (r-C*x{k})'*Q*(r-C*x{k})+u{k}'*R*u{k};
   constraints = [constraints, x{k+1} == Ad*x{k}+Bd*u{k}];
    constraints = [constraints, -5 <= u{k}<= 5];</pre>
end
% Solve!
sol = optimize(constraints,objective);
% ...and return the optimal input
uout = value(u{1});
```

V. Summary & Future work

Summary

- Model-based design with Mathworks solutions works well in L4 AD application
 - Development cycle time reduction
 - Support flexible platform
 - Easy to evaluate each SW-C
 - Provide fast and robust optimization solvers
- Case study in the model-based design to develop L4 AD

Challenges	Our Solution	Mathworks Support
Development Platform	Simulink models with ROS	Robotics System Toolbox
Simulation	Design a simulator for unit test	Automated Driving Toolbox Driving Scenario Designer
Model Predictive Control	Adaptive MPC model	Model Predictive Control Toolbox

Future work

- Keep improving model-based design environment
- Adopt data-driven approaches in order to improve the performance and the reliability of the L4 AD system