MATLAB EXPO

산업용 어플리케이션을 위한 딥러닝 기반 머신비전 솔루션

송완빈, MathWorks

What is Automated Optical Inspection?

"Automated optical inspection is the **image-based** or **visual inspection** of manufacturing parts where a camera scans the device under test for both **failures** and **quality defects**"

Automated Defect Detection Machine Vision Visual Inspection Automated Inspection

Customer References

Defect Detection in Railway Components

Visual Inspection of Automotive Parts

Assess Pipe Weld Damage at Power Plants

Kansai Electric Power

Can you find the defective hex nut?

MATLAB **EXPO**

Finding Defective Hex Nuts

Good \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 001.bmp 002.bmp 003.bmp 004.bmp 005.bmp 006.bmp 007.bmp \bigcirc 0 \bigcirc 0 \bigcirc 011.bmp 012.bmp 013.bmp 014.bmp 015.bmp 016.bmp 017.bmp 018 0 \bigcirc \bigcirc \bigcirc \bigcirc 021.bmp 022.bmp 023.bmp 024.bmp 025.bmp 026.bmp 027.bmp 028 \bigcirc 0 \bigcirc \bigcirc \bigcirc \bigcirc 032.bmp 035.bmp 031.bmp 033.bmp 034.bmp 036.bmp 037.bmp \bigcirc \bigcirc 0 \bigcirc 0 0 041.bmp 042.bmp 043.bmp 044.bmp 045.bmp 046.bmp 047.bmp O 0 0 0 0 \bigcirc 051.bmp 052.bmp 053.bmp 054.bmp 055.bmp 056.bmp 057.bmp 058 0 \bigcirc 0 0 0 \bigcirc \bigcirc 061.bmp 062.bmp 063.bmp 064.bmp 065.bmp 066.bmp 067.bmp 068.

Defective

1.bmp

3.bmp

2.bmp

4.bmp

Detecting Parts

Defect Detection Workflow

10

Defect Detection Workflow

11

Data Access and Preprocessing – Common Challenges

How do I access large data that might not fit in memory?

How do I preprocess data and get the right features?

How do I label my data faster?

What if I have an imbalanced dataset or don't have enough data?

Data Access and Preprocessing – Common Challenges

How do I access large data that might not fit in memory?

How do I load and access large amounts of data?

Datastores	Tall Arrays	BigImage
Loads image/signal data into memory as and when needed >> imageDatastore	Work with out-of- memory numeric data – Train deep neura networks for numeric arrays	Work with very large, tiled and multi-resolution images
<pre>>> audioDatastore</pre>	Active Fights is (Actor and Yue, 119'- 200)	$ \frac{1}{12} $
Custom Datastores also on available right seven sheila six	MATLAB Using Tall Arrays Close Use tall arrays to work with big data in MATLAB®. You can use tall Use histogram and histogram2 to analyze and visualize data Acc	cess big bata in the

Data Access and Preprocessing – Common Challenges

How do I preprocess data and get the right features?

Pre-processing Data – Registration Estimator App

MATLAB EXPO

Pre-processing Data – Image Segmenter App

Preprocessing Data - Apps

Color Thresholder

Image Region Analyzer

Pre-processing Data – Built-in Algorithms

And Many More!

Defect detection using AlexNet: Results with preprocessing

MATLAB EXPO

Data Access and Preprocessing – Common Challenges

How do I label my data faster?

Data Preprocessing - Labeling

📣 MATLAB R2020a

Image Labeler

Video

Labeler

Big-Image

Labeler

Video Labeler

Big Image Labeler

Data Access and Preprocessing – Common Challenges

What if I have an imbalanced dataset or don't have enough data?

Augmented Dataset

N times as much data

MATLAB **EXPO**

Data Augmentation : Generative Adversarial Networks (GANs)

Generative Adversarial Networks

Defect Detection Workflow

29

Deep Learning for Defect Detection

Deep learning for Classification

 Coold
 <th

Deep Learning for Object Detection

0

Deep Learning for Defect Detection – Multiple techniques

Deep learning for Classification

Two Approaches for Deep Learning

1. Train a deep neural network from scratch

2. Fine-tune a pre-trained model (transfer learning)

Train a Deep Neural Network from Scratch

📣 Deep Network Designer		- 🗆 X
DESIGNER		•
Paste to View Arrange	Analyze Export	
LAYER LIBRARY		PROPERTIES
Filter layers	M sequence	fullyConnectedLayer
OBJECT DETECTION	sequenceInput	
regionProposalLayer		Name fc
yolov2ReorgLayer		OutputSize auto
yolov2TransformLayer	Istm	Weights []
OUTPUT	IstmLayer	Bias []
iii. softmaxLayer		WeightLearnRateFactor 1
		WeightL2Factor 1
classificationLayer	fc	BiasLearnRateFactor 1
regressionLayer	fullyConnected	BiasL2Factor 0
In the rpnSoftmaxLayer		WeightsInitializer glorot BiasInitializer zeros
rcnnBoxRegressionLayer	softmax	▼ OVERVIEW
rpnClassificationLayer	softmax softmaxLayer	
pixelClassificationLayer		
dicePixelClassificationLayer	÷	
	classoutput classificationLa	
4)

Two approaches for Deep learning

Approach 2. Fine-tune a pre-trained model (Transfer learning)

Fine-tune a Pre-trained Model (Transfer Learning)

MATLAB EXPO

Experiment Manager

•••			E	xperiment Manager					
EXPERIMENT MANAGER									?
Open Image: Constraint of the second sec	Image: Second								
Baseline run	(View Experin			0, 12.55.50 FWI	Complete 7	A s	Stopped 0	Erro	
 Baseline Tuning 					Running 1		Queued 8	× Can	
Result1 (Running) Larger Initial Learning Rate Range Sweep Learning Rate Conv Size and									
Add Conv-Batch-ReLu Banks	Trial State	tus F	Progress	Elapsed Time	myInitialLearn	convFilterSize	Training Accu	Training Loss	Validation Ac
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	1 🔮 0	Complete	100.0%	0 hr 0 min 16 sec	1.0000e-6	3.0000	12.5000	2.6441	10.
III Train Validation Split Study	2 🛛 🖉 🕻	Complete	100.0%	0 hr 0 min 15 sec	1.0000e-5	3.0000	25.7813	2.1228	20.
	3 🔮 🤆	Complete	100.0%	0 hr 0 min 14 sec	0.0001	3.0000	64.8438	1.0878	42.
	4 🛛 🛇 🕻	Complete	100.0%	0 hr 0 min 16 sec	0.0005	3.0000	90.6250	0.4648	49.
	5 🔮 🤆	Complete	100.0%	0 hr 0 min 15 sec	1.0000e-6	4.0000	11.7188	2.4967	б.
	6 🔮 C	Complete	100.0%	0 hr 0 min 15 sec	1.0000e-5	4.0000	23.4375	2.1213	14.
	7 🔮 0	Complete	100.0%	0 hr 0 min 17 sec	0.0001	4.0000	72.6563	1.0283	39.
	8 🔘 F	Running	30.7%	0 hr 0 min 4 sec	0.0005	4.0000			
	9 🛓	Queued	0.0%		1.0000e-6	5.0000			
	10 🛓 🕻	Queued	0.0%		1.0000e-5	5.0000			
	11 🔚 🕻	Queued	0.0%		0.0001	5.0000			
	12 🔚 0	Queued	0.0%		0.0005	5.0000			
	13 👱 0	Queued	0.0%		1.0000e-6	6.0000			
	14 👱 0	Queued	0.0%		1.0000e-5	6.0000			
	15 🔚 C	Queued	0.0%		0.0001	6.0000			
	16 👱 0	Queued	0.0%		0.0005	6.0000			
14									

Classification with Trained MobileNetV2

Why the defect nuts are classified as 'Bad'?

Challenges with Deep Learning Models

Deep Learning model is a black box model

- Is it possible to classify an unknown image correctly?
- Why the model misclassify for certain images?

Class Activation Mapping to Investigate Network Predictions

Attribution Reveals the Why Behind Deep Learning Decisions Full code available

Classified as "keyboard" due to the presence of the mouse

Incorrectly classified "coffee mug" as "buckle" due to the watch

MATLAB EXPO

Visualization of Features with CAM

The network judges the unit as Bad by seeing the scratched area

Deep Learning for Defect Detection

Deep Learning for Object Detection

Object Detection in Image/Vision System

Object detection

 Computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos

MATLAB EXPO

Increase productivity using built-in functions for design and analysis

Use MATLAB high-level API for changing network type, backbone network for better performance easily.

MATLAB EXPO

Practical Object Detection Examples using Deep Learning

Repository Link

Defect Detection Workflow

Deploy to Any Processor with Best-in-class Performance

Deploy to Hardware

Deploy defect detection algorithms from MATLAB to ZCU102 board from Xilinx

Deploy defect detection algorithms from MATLAB to Jetson AGX Xavier

Deploy to Hardware

🛃 ishanl	kar-deb9-64.dr	ncp.matl	works	.com:6 (rcher	uku) - TigerV	NC				- 0	×
U		-cp.indu		.como (rener	and, figery			tee	chcon@ml-workshop-test-26: ~	÷ -	
File E	dit View	Coord	Ter	empirel Lte	de la				- ,		
top - Thread %Cpu(s KiB Me	22:06:20 ds: 167 t s): 25.3	up 1 otal, us, 0036	day 3 0.9 tota	, 23:20 running sy, 0.0	, 3 use g, 102 s 0 ni, 73 8672 fre	leeping, .7 id, e, 203	, 0 0.0 w 3504 u	stoppe a, 0. sed,	1.55, 0.87, 0.37 d, 0 zombie 0 hi, 0.0 si, 0.0 st 1437860 buff/cache 3652220 avail Mem		
	USER	PR	NI	VIRT	RES		5 %CPU		TIME+ COMMAND		
	techcon	20	0	770124		81036 F			2:59.16 nutsDet_exe		
	techcon	20	0	770124		81036 9			0:50.61 nutsDet_exe	Nuts Defect Detection Demo 💮 👝 🖂 💥	
	techcon	20	0	770124		81036 F		5.1	0:50.22 nutsDet_exe	+ + + + = = = = = + + *	
	techcon	20	0	770124		81036 9			0:50.49 nutsDet_exe		
	recinción	20	U		3040	2070 3			0:10.81 sshd	ок 1.87 FPS	
	techcon root	20 20	0	5984	2760 0	2176 F		0.1	0:03.85 top		
2130		20	0	0 0	0	0 1		0.0	0:58.59 rcu_preempt 0:23.68 kworker/5:2	NG	
17151		20	0	0	0	0 1		0.0	0:02.27 kworker/2:1		
25518		20	0	0	0	0 1		0.0	0:22.65 kworker/3:1		
28340		20	0	0	0	0 1		0.0	0:01.86 kworker/0:2		
	techcon	20	0		208236	81036 5		5.1	0:00.19 QXcbEventReader		
	root	20	õ	154280	5224	3504 9		0.1	0:12.00 systemd		
	root	20	0	0	0	0 5		0.0	0:00.18 kthreadd		
			-20	O	0	0 1		0.0	0:00.00 kworker/0:0H		
6	root	0	-20	0	Θ	0 1	0.0	0.0	0:00.00 mm percpu wq		
7	root	20	Θ	Θ	Θ	0 5		0.0	0:05.58 ksoftirgd/0		
9	root	20	Θ	Θ	Θ	0 1	0.0	0.0	0:00.38 rcu sched		
10	root	20	0	0	Θ	0 1		0.0	0:00.00 rcu_bh		
	root	rt	0	Θ	Θ	0 5		0.0	0:00.14 migration/0		
	root	20	0	Θ	Θ	0 5		0.0	0:00.00 cpuhp/0		
	root	20	0	Θ	Θ	0 9		0.0	0:00.00 cpuhp/1		
	root	rt	0	0	Θ	0 5		0.0	0:00.15 migration/1		
	root	20	0	0	0	0 5		0.0	0:00.28 ksoftirqd/1		
	root	0	-20	0	0	0 1		0.0	0:00.00 kworker/1:0H		
	root	20	0	0	0	0 9		0.0	0:00.00 cpuhp/2		
	root	rt	0	0	0	0 9		0.0	0:00.14 migration/2		
20	root	20	Θ	0	0	0 5	5 0.0	0.0	0:00.22 ksoftirqd/2		

Defect detection deployed on ARM Cortex-A microprocessor

MATLAB EXPO

Additional Resources

- Deploying Deep Neural Networks to GPUs and <u>CPUs Using MATLAB Coder and GPU Coder</u>
- Using GPU Coder to Prototype and Deploy on
 NVIDIA Drive, Jetson
- <u>Real-Time Object Detection with YOLO v2 Using</u>
 <u>GPU Coder</u>
- Image Classification on ARM CPU: SqueezeNet
 on Raspberry Pi
- Deep Learning on an Intel Processor with MKL-DNN

Defect Detection Workflow

Key Takeaways

- Interactive and easy to use apps help explore, iterate and automate workflows
- Flexibility and options to choose networks and optimizations based on data and requirements
- MATLAB provides an easy and extensible framework for defect detection from data access to deployment

Thank You

