MATLAB EXPO 2019

SoC Blockset 소개

정승혁
Agenda

- What is SoC Blockset?
 - Traditional Workflow and New Workflow for SoC Design

- Features of SoC Blockset
 - Simulate SoC Architectures
 - Analyze System Performance
 - Deploy to SoC and FPGA Devices
Model Based Design Workflow for SoC
Deploy to Hardware with Coders and Hardware Support Packages

![Diagram of Model Based Design Workflow for SoC]

- **Algorithmic Model**
- **Algorithmic Code**
- **HSP (Reference Design)**
- **Hardware Platform**
Actual Data Exchange Between FPGA and Processor

FPGA

Alg1

FIFO

FIFO size?

Burst size?

Ts (ns)

Sample

Tb (us)

Data rate?

FIFO size

Arm

Algorithm 1

Algorithm 2

Memory

Buffer1

Buffer2

Buffer3

Buffer4

Tf (ms)

Frame

Other Memory
Readers and
Writers

Contention

Contention

How to synchronize incoming data with task execution?

Number of buffers?

Burst size?

Data rate?

FIFO size?

Other Memory
Readers and
Writers

MATLAB EXPO 2019
Model Based Design Workflow for SoC

Hardware Architecture Simulation with SoC Blockset

- Simulate algorithms as well as hardware/software architecture
 - Memory
 - Internal/external connectivity
 - I/O
 - Task scheduling

- Deploy on support hardware

- Profile performance using external mode
Short Demo Video
Agenda

- What is SoC Blockset?
 - Pains and the new solution

- Features of SoC Blockset
 - Simulate SoC Architectures
 - Analyze System Performance
 - Deploy to SoC and FPGA Devices
Simulate SoC Architectures
Modeling Data Transfer

- **Memory channel blocks**
 - Register
 - Shared memory

- **Multiple protocols**
 - AXI4-Stream to Software via DMA
 - AXI4-Stream FIFO
 - AXI4-Stream Video FIFO
 - AXI4-Stream Video Frame Buffer
 - AXI4-Random Access
Modeling Data Transfer

- **Memory channel blocks**
 - Register
 - Shared memory

- **Multiple protocols**
 - AXI4-Stream to Software via DMA
 - AXI4-Stream FIFO
 - AXI4-Stream Video FIFO
 - AXI4-Stream Video Frame Buffer
 - AXI4-Random Access
Modeling Data Transfer

- **Memory controller block**
 - Arbitrate access to shared memory
 - Support multiple channels
 - Support various arbitration protocols
 - Log and display performance data
 - Latency, Burst, Bandwidth
 - Visualize internal state via Logic Analyzer
Modeling Data Transfer

- **Memory traffic generator**
 - Generate read or write requests to the memory
 - Model the impact of a master's memory accesses
 - Characterize performance of memory subsystem under contention
Modeling I/Os

- **Processor I/O**
 - TCP Read/Write
 - UDP Read/Write
 - Register Read/Write

- **Hardware Logic I/O**
 - DIP Switch, LED, Pushbutton
 - I2C Master

- **Simulation with real I/O data**
 - Record real I/O data
 - Simulate with record data
Modeling Task Execution

- Task execution on hardware is managed by Operating System
- Task is a portion of Simulink model contained within a sample rate or function-call subsystem
Modeling Task Execution

- Task manager block
 - Timer-Driven, Event-driven
 - Probability model
 - From a data file recording
 - Input ports on the block

- Parameters
 - Task Period, Task Duration
 - Priority
 - Processor core

- Task Visualization in SDI*

*SDI: Simulation Data Inspector
Modeling Software Algorithm

- Detect task overruns and implement countermeasures
- Visualize task priority and preemption
- Simulate multicore task execution
- Record and playback task execution in simulation
Deploy to SoC and FPGA Devices
Deploying Architecture on Hardware Boards

- Generate reference designs for FPGAs and SoCs from Xilinx and Intel
- Generate HDL for hardware algorithm (require HDL Coder)
- Generate C/C++ for processor algorithm (require Embedded Coder)
Implementing on Xilinx SoC and FPGA Platforms

- **Tools**
 - Vivado Design Suite 2018.2

- **Boards**
 - FPGA: Artix-7 35T Arty, Kintex-7 KC705
 - Zynq 7000: ZC706, ZedBoard
 - Zynq UltraScale+: ZCU102

- **I/O modules**
 - HDMI Tx/Rx
 - AD9361 Rx/Tx
 - ADAU17612 codec
Implementing on Altera SoC and FPGA Platforms

- **Tools**
 - Intel Quartus Prime Standard Edition 18.0
 - Intel SoC FPGA Embedded Development Suite (EDS) 18.0

- **Boards**
 - Arria 10 SoC Development Kit
 - Cyclone V SoC Development Kit

- **I/O modules**
 - None
socBuilder

SoC Builder tool steps through the various stages for building and executing an SoC model on FPGA/SoC

- Review the model information and memory map
- Choose build actions (Build, Load, Run)
- Build the model using Xilinx or Intel tools
- Configure the Ethernet connectivity
- Load the programming file to your FPGA board
- Run the application
Customizing OS on Embedded Processor

- Libraries added
 - Audio
 - Video capture
 - Data inspector
 - SDL Display
 - File transfer
 - Register read/write
 - AXI stream

- OS Customizer
 - Support for Debian, Yocto, PetaLinux, and BuildrootLinux distributions.
 - Support for OS with Package Management System
 - Support for external OS firmware image build systems (host or remote)
Analyze System Performance
(On-Device Profiling)
Profiling on Hardware Devices

- **Code instrument profiler**
 - Record the start and stop times of each task on the processor
 - Infer instantaneous state of each task
 - Does not record Kernel latency

- **Light instrument code**
 - Negligible impact on task execution

- **Running in external mode**
 - Task execution data and statistics are recorded in files
AXI Interconnect Monitor

- All memory masters in FPGA are connected to AXI Interconnect Monitor IP
- Data queried from MATLAB using JTAG
- Collect memory interconnect traffic
- Capture transaction information
Configuration for Profiling

Hardware Implementation Pane
Profiling on Hardware Devices

- Bring real-time hardware diagnostics back to Simulink
 - Task execution profiling
 - Memory traffic monitoring
 - DMA buffer usage
 - CPU utilization

- Analyze and tune SoC model to meet your desired system performance
 - Run the SoC model in external mode
 - Interact in real time with an SoC device
Conclusion

With **SoC Blockset**, you can

- **Simulate** your hardware architecture with algorithms
- **Profile** software performance and hardware utilization on hardware devices
- **Deploy** on Xilinx and Intel devices
Learn More

- **SoC Blockset Webpage**
- **SoC Blockset Examples**
- **SoC Blockset Product Requirement**
- Supported Hardware Boards: **Xilinx**, **Intel**
MATLAB EXPO 2019

데모부스와 상담부스로 질문 하시기 바랍니다.

감사합니다