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Key takeaways

 Verify and validate requirements earlier 

 Identify inconsistencies in requirements by using unambiguous 
assessments 

 Traceability from requirements to design and test 
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Requirements

Challenge: Errors introduced early but found late

Specification C/C++

Hand code

Most errors 
introduced

Unit test finds some 
errors 

Errors found during 
integration or in field
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Requirements

Cost of finding errors increases over time 

Specification C/C++

Hand code

Time

Testing
Cost
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Requirements

Challenges with requirements based verification

Specification C/C++

Hand code

Is requirement 
interpreted 
correctly?

Is the implementation 
functioning correctly?

Are all
requirements 
implemented?

How to avoid 
modifying the 

design for test?
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Simulink models for specification

Requirements C/C++
Design 
Model

Hand code

Model-Based Design enables:

 Early testing to increase 
confidence in your design

 Delivery of higher quality 
software throughout the 
workflow
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Multiple languages to describe complex systems

Requirements C/C++
Design 
Model

Hand code
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Ad-Hoc Testing: Explore behavior and design alternatives

Requirements C/C++
Design 
Model

Hand code
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Validate behavior earlier with simulation 
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Validate Behavior Earlier with Simulation 
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Complete Model Based Design

Code 
Generation

Requirements
Design
Model

Model used for 
production code 

generation

Simulink Models

C/C++

Generated code
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Systematically verify requirements

Requirements
Design
Model

Model used for 
production code 

generation

Simulink Models

C/C++

Generated code

Are all requirements implemented?

Is the implementation functioning correctly?

Are designs and requirements consistent?
Requirements 
Based Testing
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Integrate with requirements tools and author requirements 

Simulink Requirements

Authored Requirements

External Requirements

External 
Requirements

Requirements 
Managements 

Tools

• Import from:
• Word / Excel 
• IBM® Rational® 

DOORS® 
• ReqIF™ standard

• Update synchronizes 
changes from source

• Edit and add further 
details to import

• Author requirements 

• Export ReqIF
• Enables roundtrip with 

external tools 

Import

Update

Export
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Roundtrip workflow with external tools thru ReqIF

Simulink Requirements

Authored Requirements

External Requirements

External 
Requirements

Requirements 
Managements 

Tools

• Import from:
• Word / Excel 
• IBM® Rational® 

DOORS® 
• ReqIF™ standard

• Update synchronizes 
changes from source

• Edit and add further 
details to import

• Author requirements 

• Export ReqIF
• Enables roundtrip with 

external tools 
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Test Case

Requirements Verification with Simulink 

Implemented
By

Test Harness

Inputs

Test Sequence

Signal Editor

Assessments

Test 
Assessments

MATLAB Unit Test

Verified
By

Simulink / Stateflow

Simulink Test

MAT / Excel  
file (input)

MAT / Excel 
File (baseline)

Requirements
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Test Case

Requirements Verification with Simulink 

Implemented
By

Test Harness

Inputs

Test Sequence

Signal Editor

Assessments

Test 
Assessments

MATLAB Unit Test

Verified
By

Simulink / Stateflow

Simulink Test

MAT / Excel  
file (input)

MAT / Excel 
File (baseline)

Requirements
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Example: Verifying Heat Pump Controller Requirements 

Requirements in DOORS
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Example: Heat Pump Controller Implementation 
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Link requirements to implementation in model 
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Work with Model and Requirements with Requirements 
Perspective

Requirement
Annotations

Badges

Implementation and 
Verification Status

Browser

Property 
Inspector
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Track Implementation and Verification

Implemented

Justified

Implementation Status

Missing

Passed

Failed

Unexecuted

Missing

Verification Status
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Isolate Component Under Test with Test Harness
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Test Sequence Block: Step-based and temporal test sequences
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Test Assessments: Formalize and execute requirements

Activate Heat Pump

If the temperature difference 
exceeds 2 degrees for more 
than 2 seconds, then the 
pump shall activate for at 
least 2 seconds
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Translate textual requirements into unambiguous Temporal 
Assessments

• Compose assessments 
using form based editor

• View assessments as 
English-like sentence

• Link to requirements

• Review and debug temporal 
assessment results

Temporal Assessment Editor
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Translate textual requirements into unambiguous Temporal 
Assessments

• Compose assessments 
using form based editor

• View assessments as 
English-like sentence

• Link to requirements

• Review and debug temporal 
assessment results

Temporal Assessment Editor

Requirements
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Translate textual requirements into unambiguous Temporal 
Assessments

• Compose assessments using 
form based editor

• View assessments as 
English-like sentence

• Link to requirements

• Review and debug temporal 
assessment results

Temporal Assessment Editor

View and Debug Assessment Results
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Demo : Temporal Assessments
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Execute assessments to verify requirements
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Locate implementation of requirement using link
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Observers: Separate test/verification logic from design

• Access nested signals 
without signal lines or 
changing dynamic response

• Avoid modifying interface 
for testing 

• Simplify design and test by 
avoiding additional signal 
lines

Design Model
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Observers: Separate test/verification logic from design

• Access nested signals 
without signal lines or 
changing dynamic 
response

• Avoid modifying interface 
for testing 

• Simplify design and test by 
avoiding additional signal 
lines

Observer Model

Design Model
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Demo : Observers
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Summary

 Verify and validate requirements earlier 

 Identify inconsistencies in requirements 
by using unambiguous assessments 

 Traceability from requirements to design 
and test 
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Learn More

Key products covered in this presentation: 

 Simulink Requirements

 Simulink Test

 Simulink Real-Time 

Learn more at Verification, Validation and Test Solution Page:

mathworks.com/solutions/verification-validation.html


