
1© 2015 The MathWorks, Inc.

모델기반설계를이용한요구사항
기반검증의단순화

Application Engineer
홍혁기부장

2

Key takeaways

 Verify and validate requirements earlier

 Identify inconsistencies in requirements by using unambiguous
assessments

 Traceability from requirements to design and test

3

Requirements

Challenge: Errors introduced early but found late

Specification C/C++

Hand code

Most errors
introduced

Unit test finds some
errors

Errors found during
integration or in field

4

Requirements

Cost of finding errors increases over time

Specification C/C++

Hand code

Time

Testing
Cost

5

Requirements

Challenges with requirements based verification

Specification C/C++

Hand code

Is requirement
interpreted
correctly?

Is the implementation
functioning correctly?

Are all
requirements
implemented?

How to avoid
modifying the

design for test?

6

Simulink models for specification

Requirements C/C++
Design
Model

Hand code

Model-Based Design enables:

 Early testing to increase
confidence in your design

 Delivery of higher quality
software throughout the
workflow

7

Multiple languages to describe complex systems

Requirements C/C++
Design
Model

Hand code

8

Ad-Hoc Testing: Explore behavior and design alternatives

Requirements C/C++
Design
Model

Hand code

9

Validate behavior earlier with simulation

10

Validate Behavior Earlier with Simulation

11

Complete Model Based Design

Code
Generation

Requirements
Design
Model

Model used for
production code

generation

Simulink Models

C/C++

Generated code

12

Systematically verify requirements

Requirements
Design
Model

Model used for
production code

generation

Simulink Models

C/C++

Generated code

Are all requirements implemented?

Is the implementation functioning correctly?

Are designs and requirements consistent?
Requirements
Based Testing

13

Integrate with requirements tools and author requirements

Simulink Requirements

Authored Requirements

External Requirements

External
Requirements

Requirements
Managements

Tools

• Import from:
• Word / Excel
• IBM® Rational®

DOORS®
• ReqIF™ standard

• Update synchronizes
changes from source

• Edit and add further
details to import

• Author requirements

• Export ReqIF
• Enables roundtrip with

external tools

Import

Update

Export

14

Roundtrip workflow with external tools thru ReqIF

Simulink Requirements

Authored Requirements

External Requirements

External
Requirements

Requirements
Managements

Tools

• Import from:
• Word / Excel
• IBM® Rational®

DOORS®
• ReqIF™ standard

• Update synchronizes
changes from source

• Edit and add further
details to import

• Author requirements

• Export ReqIF
• Enables roundtrip with

external tools

15

Test Case

Requirements Verification with Simulink

Implemented
By

Test Harness

Inputs

Test Sequence

Signal Editor

Assessments

Test
Assessments

MATLAB Unit Test

Verified
By

Simulink / Stateflow

Simulink Test

MAT / Excel
file (input)

MAT / Excel
File (baseline)

Requirements

16

Test Case

Requirements Verification with Simulink

Implemented
By

Test Harness

Inputs

Test Sequence

Signal Editor

Assessments

Test
Assessments

MATLAB Unit Test

Verified
By

Simulink / Stateflow

Simulink Test

MAT / Excel
file (input)

MAT / Excel
File (baseline)

Requirements

17

Example: Verifying Heat Pump Controller Requirements

Requirements in DOORS

18

Example: Heat Pump Controller Implementation

19

Link requirements to implementation in model

20

Work with Model and Requirements with Requirements
Perspective

Requirement
Annotations

Badges

Implementation and
Verification Status

Browser

Property
Inspector

21

Track Implementation and Verification

Implemented

Justified

Implementation Status

Missing

Passed

Failed

Unexecuted

Missing

Verification Status

22

Isolate Component Under Test with Test Harness

23

Test Sequence Block: Step-based and temporal test sequences

24

Test Assessments: Formalize and execute requirements

Activate Heat Pump

If the temperature difference
exceeds 2 degrees for more
than 2 seconds, then the
pump shall activate for at
least 2 seconds

25

Translate textual requirements into unambiguous Temporal
Assessments

• Compose assessments
using form based editor

• View assessments as
English-like sentence

• Link to requirements

• Review and debug temporal
assessment results

Temporal Assessment Editor

26

Translate textual requirements into unambiguous Temporal
Assessments

• Compose assessments
using form based editor

• View assessments as
English-like sentence

• Link to requirements

• Review and debug temporal
assessment results

Temporal Assessment Editor

27

Translate textual requirements into unambiguous Temporal
Assessments

• Compose assessments
using form based editor

• View assessments as
English-like sentence

• Link to requirements

• Review and debug temporal
assessment results

Temporal Assessment Editor

28

Translate textual requirements into unambiguous Temporal
Assessments

• Compose assessments
using form based editor

• View assessments as
English-like sentence

• Link to requirements

• Review and debug temporal
assessment results

Temporal Assessment Editor

29

Translate textual requirements into unambiguous Temporal
Assessments

• Compose assessments
using form based editor

• View assessments as
English-like sentence

• Link to requirements

• Review and debug temporal
assessment results

Temporal Assessment Editor

Requirements

30

Translate textual requirements into unambiguous Temporal
Assessments

• Compose assessments using
form based editor

• View assessments as
English-like sentence

• Link to requirements

• Review and debug temporal
assessment results

Temporal Assessment Editor

View and Debug Assessment Results

31

Demo : Temporal Assessments

32

Execute assessments to verify requirements

33

Locate implementation of requirement using link

34

Observers: Separate test/verification logic from design

• Access nested signals
without signal lines or
changing dynamic response

• Avoid modifying interface
for testing

• Simplify design and test by
avoiding additional signal
lines

Design Model

35

Observers: Separate test/verification logic from design

• Access nested signals
without signal lines or
changing dynamic
response

• Avoid modifying interface
for testing

• Simplify design and test by
avoiding additional signal
lines

Observer Model

Design Model

36

Demo : Observers

37

Summary

 Verify and validate requirements earlier

 Identify inconsistencies in requirements
by using unambiguous assessments

 Traceability from requirements to design
and test

38

Learn More

Key products covered in this presentation:

 Simulink Requirements

 Simulink Test

 Simulink Real-Time

Learn more at Verification, Validation and Test Solution Page:

mathworks.com/solutions/verification-validation.html

