MATLAB EXPO 2019

에너지 최적화를 위한 에너지 관리 시스템(EMS)

강효석

Motivation

Motivation

Smart Energy Management Systems (EMS) are a <u>MUST</u> in a smart energy society

Buildingid

Community EMS

Community EMS

Community EMS

EMS Logic

EMS Logic

Simulation Results

Smart EMS

What do you need to build a smart EMS?

- Integrated development environment
 - Data analysis
 - Predictive modeling
 - Optimization
 - Control
 - System Design
- Virtual prototyping
- Deployment options
 - Deploy to embedded systems
 - Deploy to enterprise systems

	ables - nyiso			
	so ×			
9191	18x12 table			
	1 - Date	2 CAPITL	3 CENTRL	4 DUNWOD
1	01-Jan-2004 00:00:00	1015	1651	618
2	01-Jan-2004 01:00:00	927	1562	568
3	01-Jan-2004 02:00:00	891	1507	541
4	01-Jan-2004 03:00:00	NaN	1440	517
5	01-Jan-2004 04:00:00	NaN	1434	499
6	01-Jan-2004 05:00:00	NaN	1449	496
7	01-Jan-2004 06:00:00	NaN	1490	524
8	01-Jan-2004 07:00:00	NaN	1525	526
9	01-Jan-2004 08:00:00	960	1529	518
10	01-Jan-2004 09:00:00	1046	1628	541
11	01-Jan-2004 10:00:00	1111	1706	570

Access Data

Analyze Data

Develop

	ables - nyiso			
	50 ×			
III 9191	18x12 table			
	1	2 CAPITL	3 CENTRL	4 DUNWOD
1	01-Jan-2004 00:00:00	1015	1651	618
2	01-Jan-2004 01:00:00	927	1562	568
3	01-Jan-2004 02:00:00	891	1507	541
4	01-Jan-2004 03:00:00	NaN	1440	517
5	01-Jan-2004 04:00:00	NaN	1434	499
6	01-Jan-2004 05:00:00	NaN	1449	496
7	01-Jan-2004 06:00:00	NaN	1490	524
8	01-Jan-2004 07:00:00	NaN	1525	526
9	01-Jan-2004 08:00:00	960	1529	518
10	01-Jan-2004 09:00:00	1046	1628	541
11	01-Jan-2004 10:00:00	1111	1706	570

Analyze Data

Develop

Deploy

Access Data

2500	UNWOD Region		- 1-						
	Date	×47	25	x47	81	x14	714	x14	732
2000 - 1500 - 500 -	01-May-2007 00:45:00 01-May-2007 00:51:00 01-May-2007 00:53:00 01-May-2007 00:53:00 01-May-2007 00:55:00 01-May-2007 00:56:00 01-May-2007 01:51:00 01-May-2007 01:51:00 01-May-2007 01:53:00 01-May-2007 01:55:00 01-May-2007 01:55:00	NaN 46 NaN NaN NaN NaN 44 NaN NaN NaN	NaN NaN 26 NaN NaN NaN 26 NaN NaN NaN	NaN NaN NaN NaN 51 NaN NaN NaN NaN 50	NaN NaN NaN NaN 32 NaN NaN NaN NaN 33	50 NaN NaN NaN NaN 46 NaN NaN NaN NaN NaN	34 NaN NaN NaN NaN 34 NaN NaN NaN NaN	NaN 58 NaN NaN NaN 59 NaN NaN NaN NaN	NaN 30 NaN NaN NaN 28 NaN NaN NaN NaN
-500 Mar 2005 May 2005 Ju	2005 Sep 2005 Nov 2005 Date	Jan 2006	5						

Engineering Data

- Electric load: user's electrical load, cooling load, ...
- Sensor data: irradiance, wind speed, temperature, ...

Business Data

• Market information: electricity prices, gas prices, equipment costs, interest rates, ...

Need ways to access ooth business and engineering data

🔏 Varia	ables - nyiso			
nyis	50 ×			
III 9191	18x12 table			
	1 - Date	2 CAPITL	3 CENTRL	4 DUNWOD
1	01-Jan-2004 00:00:00	1015	1651	618
2	01-Jan-2004 01:00:00	927	1562	568
3	01-Jan-2004 02:00:00	891	1507	541
4	01-Jan-2004 03:00:00	NaN	1440	517
5	01-Jan-2004 04:00:00	NaN	1434	499
6	01-Jan-2004 05:00:00	NaN	1449	496
7	01-Jan-2004 06:00:00	NaN	1490	524
8	01-Jan-2004 07:00:00	NaN	1525	526
9	01-Jan-2004 08:00:00	960	1529	518
10	01-Jan-2004 09:00:00	1046	1628	541
11	01-Jan-2004 10:00:00	1111	1706	570

Access Data

Deploy

Data Preprocessing Messy Data

- Missing data, outliers, sampling,
- Filtering and smoothing, resampling, ...
- Join, stack, group, discretize

Need a powerful technical computing environment

Access and Analyze Data

Access and Explore Data

Analyze Data

Access Data

Name

_	· ~ - 2										it1.csv - Excel							Jianghao \	Vang 🖭			×		
		nsert Draw	Page Layout	Formul	as Data	Review	View A	dd-ins	Team (🖓 Tell me wi	hat you want to o	lo					- 1		_		₽, s	Share		
		Calibri	* 11 *	A A ≡	= = ?	≫- ₽v	Wrap Text	Ger	neral	Ŧ		Norma	I	Bad	Goo	d	- E- P		∑ AutoSum ↓ Fill -	Ľ <mark>A</mark> Ţ	ρ			
	opy * ormat Paint	B I U	• 🖽 • 🕭	• <u>A</u> • =	== ;	e 🕶 🖻 N	vlerge & Cen	ter - \$	- % ,	.00 .00 Co	nditional Forma	t as Neutra	l i	Calculat	ion Che	ck Cell	Insert Delet	e Format	Clear *		Find &			
Clipbo		5	Font	5		Alignment		5	Number	FO	rmatting * Tabl	3*	Styl	es			Cells			Filter * Editing	Select *	~		
1	¥ 1	× ✓	fr Unit																			~		
																1	1							
A Unit	B	C	D t' HPCOutlet L	E PTOutlet] T	F TotalHRCC I	G DhysEanSn Di	H hysCoroS St	l aticHDC(E	J	К	L	MN		0	P Q	R	S	T	U	V	W	A		
	1	5 642.20			554.164	2388.07 9			522.282	\mathbb{Z} v	ariable	s - Jab	eled	Data	9									
	1			1402.76		2388.062 9			522.286	e	anabro			240										
-	1		3 1586.084 1			2388.058 9			522.294		PLOTS			1/01	RIABLE		V							
-	1		2 1585.078 5 1586.716 1		554.262	2388.042 9 2388.03 9		47.234	522.304 522.09		PLUIS			VA	RIADLE		VI	EW						
	1		4 1588.394 1			2388.028 9		47.216	522.05															
	1	11 642.2	3 1587.85 1	.398.928	554.002	2388.034	9049.54	47.214	521.954															
	1		5 1586.068 1			2388.048 9		47.178	521.85				Open	-	Rows		Colum	15	-				Transpo	92
	1		8 1585.914 1			2388.072 9			521.726		-	2	open		110110		oolullii				-		in anopo	
	1		4 1586.308 1 8 1584.824 1			2388.08 9 2388.092 9			521.702 521.844				- · ·						1		_			
	1	16 642.40				2388.092 9			521.862	Ne	w from		Print	•	3		1		l In	sert	Delet	te	Sort 🔫	
	1	17 642.51				2388.086 9		47.296	521.88	Sele	ction 🔻									•	- -			
	1	18 642.42					9050.68		521.862															
	1		1 1587.072			2388.062 9			521.906		VAR	RIABLE				SELE	CTION					EDIT		
	1	20 642.43			554.186		9050.74	47.238	521.82		¥7-5	WIDEE				OLLL	onion					CON		
	1		8 1586.148 1 8 1587.742			2388.062 9 2388.058	9051.76	47.244	522.006	1	بملمطحا	Data	200											
	1		2 1587.172 1			2388.058 9		47.252	521. 8	-														
	1	24 642.5	4 1587.826 1	.399.498	553.998	2388.074	9049.06	47.26	522.0	-	0001.4	7 +- -												
	1		5 1590.424			2388.068 9			522.1 5	2	0231x1	7 <u>tab</u>	e											
	1		4 1591.026 1		553.842	2388.06 9			522.0		_			-		-							-	
	1		8 1590.534 1 2 1589.464 1		553.93	2388.056 9 2388.07 9			522.098 522.308			1		2		3	}		4	1			5	
	1		5 1588.264 1			2388.056 9			522.364			la ta		T :		DCO	1 - 4 T	110	0.1	- - T -		L DT	O	T - 4 - 11 1
	1		2 1588.148 1		554.296	2388.066	9048.2	47.336	522.29		U U	Init		Tim	ne l	PCOut	letTem	HP	COuti	ette	mp	LPT	OutletTem	llotaiH
	1		4 1587.168 1			2388.068 9			522.224	4			4		107	<i>C</i> 4	2 2000		4	F070	02	4	4022- 02	
	1	32 642.16				2388.072 9			522.208	1					-187	04	2.2080		I.	28/0)e+03		.4032e+03	
	1	33 642.23 34 642.3	4 1588.462 1 5 1587.79			2388.056 9 2388.052 9			522.076 521.934	2			4		100	<i>с</i> л	2 26 40		4	FOCO	02	4	402002	
	1		B 1587.086 1				9049.82		521.846	2			 		-186	64	2.2640		١.	2800)e+03	I.	.4028e+03	
	1	36 642.51	2 1586.594 1	.402.362	554.54	2388.032 9	9046.976	47.312	521.92	2					4.0.5	<i>c</i> 1	2 2200		4	FOCA			404702	
	1	37 642.44	4 1584.14	1402.07	554.474	2388.038	9047.87	47.32	521.994	3					-185	64	2.3300		١.	2801	le+03	I.	.4017e+03	
		\oplus											4		404	<i>c</i> 1	2 2 2 2 2 2		4		0.0		1010 00	
	unit1									4			1		-184	64	2.3720		1.	5851	e+03	1	.4010e+03	
	unit1									-					100	~ •							2005 00	
	unit1									5					-183	64	2.3260		1.	5867	'e+03	1	.3996e+03	
() ·	unit1														100	~							2005 - 22	
	unit1														-182	64	2.1940		1.	5882	le+03	1		
	unit1									6	_		<u> </u>							200-	10-10-0	1	.3985e+03	'l
-	unit1									6			-									┼───		
	unit1									6 7			1		-181	64	2.2300)e+03	┼───	.3985e+03 .3989e+03	
()	unit1									6 7 8			1						1.	5879		1		

Make it easy to handle Data for Data Analytics

-	

Table

	C
Tim	etables

• For:

- Mixed-type tabular data
- Include metadata
- Time-stamped tabular data

Provides:

- Flexible indexing
- Data organization
 - joins, stack/unstack, etc.
- Indexing by time, time range, or within a tolerance around a time
- Retiming to create a constant sample rate

data(1:10,["begin_timestamp","state","event_type","event_narrative","damage_total"])

ans = 10×5 table

	begin_timestamp	state	event_type	event_narrative	damage_total
1	02-May-2003 13:55:00	ALABAMA	Hail	"tennis ball size hail	0
2	20-Apr-1999 10:20:00	FLORIDA	Dust Devil	"a dust devil caused	1
3	26-Mar-2014 04:17:00	MASSACH	Blizzard	"the automated surf	65
4	21-Oct-1996 14:00:00	CALIFORNIA	Wildfire	"santa ana winds av	37400
5	08-May-2001 18:17:00	KANSAS	Tornado	"tornado entered mi	0
6	15-Jun-2017 20:55:00	GEORGIA	Thunderstorm	"the twiggs county 9	6
7	27-Dec-2008 12:50:00	TEXAS	Strong Wind	"a large tree was do…	1
8	11-Oct-1997 21:10:00	COLORADO	Thunderstorm	"the supercell thund	0
9	29-May-2015 17:40:00	ARKANSAS	Thunderstorm	"a tree fell on a hom	25
10	27 100 2000 20:00:00		Minton Channe	Ila unintan atawa kuarr	0

data(timerange("01-Jan-2017","17-Mar-2017"),:)

ans = 161×4 timetable	
-----------------------	--

	begin_timestamp	state	event_type	event_narrative	damage_total
1	21-Jan-2017 13:02:00	GEORGIA	Thunderstorm	"a tree was blown d…	0
2	21-Jan-2017 05:14:00	ALABAMA	Tornado	"the tornado first tou	750
3	05-Jan-2017 04:00:00	OHIO	Winter Weather	"the county garage	0
4	05-Mar-2017 18:00:00	OREGON	Snow	"there were reports	0
5	04-Feb-2017 12:15:00	WYOMING	Wind	"the wydot sensor a	0
6	08-Feb-2017 08:00:00	INDIANA	Winter Weather	"the observers locat	0
7	18-Jan-2017 18:00:00	CALIFORNIA	Winter Weather	"a spotter in moonri…	0
8	07-Feb-2017 07:00:00	CALIFORNIA	Flood	"major flooding from	0
9	13-Jan-2017 15:00:00	KANSAS	Ice Storm	"ice accretion was 3	0
10	22 100 2017 00:00:00		10//im.al	"	50

Access Data

Tall Arrays

- Data is in one or more files
- Typically tabular data
- Files stacked vertically
- Data doesn't fit into memory (even cluster memory)
- Create tall table from datastore

```
ds = datastore('*.csv')
tt = tall(ds)
```


Tall Arrays

 With Parallel Computing Toolbox, process several pieces at once

Enterprise Data Access

Analyze Data

- Pre-processing
 - Data Cleaning
 - Missing Data
 - Merging Data
 - Outliners and Smoothing
 - Filtering
 - Normalization/Calibration
 - Aggregation/Resampling
 - Data Reduction/ Transformation
- Post-processing
 - Feature Extraction
 - Grouping
 - Regression
 - Classification

🔏 Vari	ables - nyiso			
l nyi	so ×			
III 919	18x12 <u>table</u>			
	1 - Date	2 CAPITL	3 CENTRL	4 DUNWOD
1	01-Jan-2004 00:00:00	1015	1651	618
2	01-Jan-2004 01:00:00	927	1562	568
3	01-Jan-2004 02:00:00	891	1507	541
4	01-Jan-2004 03:00:00	NaN	1440	517
5	01-Jan-2004 04:00:00	NaN	1434	499
6	01-Jan-2004 05:00:00	NaN	1449	496
7	01-Jan-2004 06:00:00	NaN	1490	524
8	01-Jan-2004 07:00:00	NaN	1525	526
9	01-Jan-2004 08:00:00	960	1529	518
10	01-Jan-2004 09:00:00	1046	1628	541
11	01-Jan-2004 10:00:00	1111	1706	570

Analyze Data

Develop

Deploy

Access Data

Predictive Models

- Energy demand
- Electricity price
- Weather
- Consumer behavior

Need quick iteration of various predictive models

	so ×			
919	18x12 table			
	1 + Date	2 CAPITL	3 CENTRL	4 DUNWOD
1	01-Jan-2004 00:00:00	1015	1651	618
2	01-Jan-2004 01:00:00	927	1562	568
3	01-Jan-2004 02:00:00	891	1507	541
4	01-Jan-2004 03:00:00	NaN	1440	517
5	01-Jan-2004 04:00:00	NaN	1434	499
6	01-Jan-2004 05:00:00	NaN	1449	496
7	01-Jan-2004 06:00:00	NaN	1490	524
8	01-Jan-2004 07:00:00	NaN	1525	526
9	01-Jan-2004 08:00:00	960	1529	518
10	01-Jan-2004 09:00:00	1046	1628	541
11	01-Jan-2004 10:00:00	1111	1706	570

Access Data

Analyze Data

Optimization Models

- Objectives on cost, comfort, reliability
- Constraints to meet demand, respect equipment and system limitations

Need reliable optimization solvers

Vari	ables - nyiso			
	so ×			
919	18x12 table			
	1 -	2	3	4
-	Date	CAPITL	CENTRL	DUNWOD
1	01-Jan-2004 00:00:00	1015	1651	618
2	01-Jan-2004 01:00:00	927	1562	568
3	01-Jan-2004 02:00:00	891	1507	541
4	01-Jan-2004 03:00:00	NaN	1440	517
5	01-Jan-2004 04:00:00	NaN	1434	499
6	01-Jan-2004 05:00:00	NaN	1449	496
7	01-Jan-2004 06:00:00	NaN	1490	524
8	01-Jan-2004 07:00:00	NaN	1525	526
9	01-Jan-2004 08:00:00	960	1529	518
10	01-Jan-2004 09:00:00	1046	1628	541
11	01-Jan-2004 10:00:00	1111	1706	570

Analyze Data

Access Data

System Simulation Models

- Plan strategies of system function and performance on desktop
- Simulate physical system performance with high fidelity
 - Analyze edge conditions
- Simulate multiple scenarios quickly with low fidelity

Develop

Perform statistical analysis on results

Need virtual prototyping environment

Prediction Example: Energy Demand

- Make prediction model using the pattern of energy demand with the data of the grid → Regression
- Find the important variables for the prediction of energy demand

- Important variables:
 - Customer behavior
 - Temperature
 - Price
 - Illumination
 - Hour, holiday, month

Evaluate all Regression Models

Finding the best predition model

- Train all models using training data and compare accuracy of each one
 - Trainings can run in parallel
- Multiple methods to assess accuracy

📣 회귀 학습기 - 응답 플롯									
회구	비 학습기		보기						
대 세선		PCA	오는 빠른	모두	선형	상호 작용	↓ ①	병렬 연산	> 훈련
파일	특징		훈련		모델 유형	선형		훈련	

Regression Models

데이터 브라우저	۲
▼내역	
1.1 ☆ 선형 회귀	RMSE: 0.054229
마지막변경: 선형	특징 4/16(PCA 사용)
1.2 ☆ 선형 회귀	RMSE: 0.046231
마지막변경: 상호 작용 선형	특징 4/16(PCA 사용)
1.3 🟠 선형 회귀	RMSE: 0.054239
마지막변경: 로버스트 선형	특징 4/16(PCA 사용)
1.4 合 단계적 선형 회귀	RMSE: 0.04623
마지막변경: 단계적 선형	특징 4/16(PCA 사용)
1.5 🏠 트리	RMSE: 0.028364
마지막변경: 조밀 트리	특징 4/16(PCA 사용)
1.6 ☆ 트리	RMSE: 0.032164
마지막변경: 중간 트리	특징 4/16(PCA 사용)
1.7 ☆ 트리	RMSE: 0.037195
마지막변경: 성긴 트리	특징 4/16(PCA 사용)
1.8 ☆ SVM	RMSE: 0.054343
마지막변경: 선형 SVM	특징 4/16(PCA 사용)
1.9 ☆ SVM	RMSE: 0.046012
마지막 변경: 2차 SVM	특징 4/16(PCA 사용)
1.10 ☆ SVM	RMSE: 0.047342
마지막 변경: 3차 SVM	특징 4/16(PCA 사용)
1.11 ☆ SVM	RMSE: 0.042549
마지막변경: 조밀 가무스 SVM	특징 4/16(PCA 사용)
1.12 ☆ SVM	RMSE: 0.045173
마지막변경: 중간 가우스 SVM	특징 4/16(PCA 사용)
1.13 ☆ SVM	RMSE: 0.049373
마지막변경: 성긴 가무스 SVM	특징 4/16(PCA 사용)
1.14 🟠 암상불	RMSE: 0.98836
마지막변경: 부스팅 트리	특징 4/16(PCA 사용)
1.15 ☆ 앙상블	RMSE: 0.027709
마지막변경: 배깅 트리	특징 4/16(PCA 사용)

Optimization: Community EMS with PV and Battery

Optimization: Community EMS with PV and Battery

Optimization: Community EMS with PV and Battery

$$\begin{array}{c} \underset{k=1}{\text{minimize}} \left[\sum_{t=1}^{N} \delta_{c_{t}} G_{t} - w E_{N} + \sum_{t=1}^{N-1} g_{t} \right] \\ \text{subject to} \\ \\ \underset{k=1}{E_{t+1}} = E_{t} - \delta B_{t} \\ \\ \underset{k=1}{E_{t+1}} = E_{t} - \delta B_{t} \\ \\ \underset{k=1}{E_{t+1}} = E_{t} - \delta B_{t} \\ \\ \hline \\ \underset{k=1}{E_{t+1}} = G_{t} - \delta_{t} \\ \\ \hline \\ \underset{k=1}{E_{t+1}} = G_{t} - \delta_{t} \\ \\ \hline \\ \underset{k=1}{E_{t+1}} = G_{t} - \delta_{t} \\ \\ \hline \\ \underset{k=1}{E_{t+1}} = G_{t} - \delta_{t} \\ \\ \hline \\ \underset{k=1}{E_{t+1}} = G_{t} - \delta_{t} \\ \\ \hline \\ \underset{k=2}{E_{t+1}} = G_{t} \\ \\ \hline \\ \underset{k=2}{E_{t}} \\ \\ \hline \\ \\ \hline \\ \end{aligned}$$

options = optimoptions(prob.optimoptions, 'Display', 'none'); [values,~,exitflag] = solve(prob, 'Options', options);

MATLAB EXPO 2019

l

Solving: Problem Types and Algorithms

Mixed-integer linear programming

Linear programming

Branch and cut

Quadratic programming

Interior point and trust region

- Simplex and interior point

- Least-squares and nonlinear equations
 - Interior point, trust region, Levenberg-Marquardt
- Multiobjective optimization
 - Weighted and goal-attainment
 - Genetic algorithm
 - Pattern (direct) search

Optimization Toolbox

Global Optimization Toolbox

- Nonlinear optimization
 - Interior point
 - SQP
 - Trust region
 - Nelder-Mead simplex
 - MultiStart & GlobalSearch
 - Pattern (direct) search
 - Genetic algorithm
 - Simulated annealing
 - Particle swarm
 - Surrogate optimization
- Mixed-integer nonlinear optimization
 - Genetic algorithm

System Simulation – Model Configuration

- Community EMS

System Simulation – Plant Modeling

- Advantage of Simscape Electrical
 - Easy to build a circuit model
 - Fidelity change for each component
 - Integration with data
 - High scalability and reusability

pvM

System Simulation – Smart EMS

- Optimize electricity cost every few hours
 - Linear programming solver in Optimization Toolbox
 - Input
 - Battery stored energy
 - Control Parameters
 - Predicted data
 - Output
 - Charging/Discharging command

Policy Comparison - Cloudy Day

Heuristic

Optimized

Comparison

14% lower cost with optimization

Community EMS

EMS Development Workflow

myiso × 1				
1	01-Jan-2004 00:00:00	1015	1651	618
2	01-Jan-2004 01:00:00	927	1562	568
3	01-Jan-2004 02:00:00	891	1507	541
4	01-Jan-2004 03:00:00	NaN	1440	517
5	01-Jan-2004 04:00:00	NaN	1434	499
6	01-Jan-2004 05:00:00	NaN	1449	496
7	01-Jan-2004 06:00:00	NaN	1490	524
8	01-Jan-2004 07:00:00	NaN	1525	526
9	01-Jan-2004 08:00:00	960	1529	518
10	01-Jan-2004 09:00:00	1046	1628	54:
11	01-Jan-2004 10:00:00	1111	1706	57(

Access Data

Desktop apps

Enterprise systems

Embedded devices

Analyze Data

Develop Models

Deployment

- System integration, system test
- Continually monitor performance
 - Monitor for predictive maintenance
 - Use models as digital twins
 - Analyze against system objectives

Need to consider integration to both embedded systems and enterprise IT Workflows

Integrate Analytics with Systems

Deployment Workflow on Embedded Systems

Deployment Workflow on Cloud and Business Systems

A MathWorks[®]

Integration with Enterprise IT

EMS Development Workflow

BuildingIQ Develops Proactive Algorithms for HVAC Energy Optimization in Large-Scale Buildings

Challenge

Develop a real-time system to minimize HVAC energy costs in large-scale commercial buildings via proactive, predictive optimization

Solution

Use MATLAB to analyze and visualize big data sets, implement advanced optimization algorithms, and run the algorithms in a production cloud environment

Results

- Gigabytes of data analyzed and visualized
- Algorithm development speed increased tenfold
- Best algorithmic approaches quickly identified

Large-scale commercial buildings can reduce energy costs by 10–25% with BuildingIQ's energy optimization system.

Shanghai Electric Builds and Deploys Cost-Saving Enterprise Software for Planning and Designing Distributed Energy Systems

Challenge

Develop web-accessible software for planning and designing distributed energy systems

Solution

Use MATLAB to develop algorithms that compute investment return based on models of energy production subsystems, loads, and grids, and then use MATLAB Production Server to deploy the algorithms in a production IT system

Results

- Delivery time reduced by six months
- 2 million Chinese yuan saved on a single project
- Updates deployed immediately and without IT assistance

DES-PSO web user interface

"My team's expertise is in energy modeling or algorithm development, not in deploying software into production. MATLAB saved us months of development time on the models and algorithms, and then made it easy to deploy them as part of a stable, reliable web application without recoding."

- Yunjiao Gu, Shanghai Electric

MATLAB & Simulink help you build a smart EMS

- Integrated development environment
 - Data analytics
 - Predictive modeling
 - Optimization
 - Control
 - System Design
- Virtual prototyping
- Deployment options
 - Deploy to embedded systems
 - Deploy to enterprise systems

MATLAB EXPO 2019

데모 부스와 상담부스로 질문 하시기 바랍니다.

감사합니다

Learn More

On the web

- <u>Microgrid System Development and Analysis</u> video series
- <u>Data Analytics with MATLAB</u> webinar
- Linear and Mixed-Integer Linear Programming in MATLAB webinar

Products

In the microgrid demo

- MATLAB
- Simulink
- Simscape
- Simscape Electrical
- Stateflow
- Optimization Toolbox

Additional products for EMS

- Statistics & Machine Learning Toolbox
- Model Predictive Control Toolbox
- Signal Processing Toolbox
- Control System Toolbox
- MATLAB Compiler
- Embedded Coder
- Simulink Test
- MATLAB Production Server
- MATLAB Parallel Server