MATLAB EXPO 2019

Simulink 기반 Legacy C/C++ Code 통합, 결과 시각화 및 검증 방안

유성재

Model-Based Design

Systematic use of models throughout the development process

REQUIREMENTS system REQUIREMENTS SYSTEM LEVEL system **BEHAVIOR** system **ANALYSIS** system component INTEGRATION **ARCHITECTURE** SUBSYSTEM/COMPONENT component component **VERIFICATION DESIGN**

MATLAB EXPO 2019

Legacy Code? Hand-written code?

Components Under Development

Internal Libraries

Verified Components

Vendor Libraries

Device Drivers

MBD with Legacy Code!

For legacy code development

Challenge?

File Contents/Complexity	Test 1			
	Decision	Statement	Function	Function call
1. mExportFunction.c	4 100%	100%	100%	100%
2 <u>function1</u>	2 100%	100%	100%	n
3mExportFunction initialize	1	100%	100%	100%
4mExportFunction terminate	<u>e</u> 1	100%	100%	155

Agenda

- Legacy code integration using Simulink
- Visualization using Simulink
- Verification with legacy code

How to Import Legacy Code

- Legacy Code Tool
- Legacy code integration in Stateflow
- C Caller Block

What legacy C code integration in Simulink means?

Legacy Code Tool enables existing C code to be used in Simulink models

How to use Legacy Code Tool?

General procedure for using Legacy Code Tool

Maintenance Problem...

Legacy code

Wrapper code void CrsCntrlerMain(void) #include "CrsCntrl Wrapper.h" boolean t l ulIncSetLong; void CrsCntrl(boolean t u1, boolean t u2, boolean t u3, boolean t u4, boolean t u5, boolean t u6, boolean t l u1DecSetLong; int16 t u7, uint8 t u8, uint8 t u9, int32 t u10, int32 t u11, uint8 t *y1, boolean t *y2, uint8 t *y3, int32 t *y4, int32 t *y5) /* setting increase button is pressed for long ti u1EnblSw = u1; if (ulIncSw == TRUE) u1Cnclsw = u2; u1SetSw = u3: if (u8IncCnt >= 50) u1ResumeSw = u4; u1Tncsw = 115 : 1 u1IncSetLong = TRUE; u1Decsw = u6; s16BrakeP = u7; u8Key = u8: else u8Gear = u9; s32ThrotDrv = u10: If any changes in code u8IncCnt = u8IncCnt + 1; s32VehSpd = u11;l ulIncSetLong = FALSE; CrsCntrlerMain(); *v1 = enumRegDrvOut: else *y2 = u1StatusOut; *y3 = enumModeOut; u8IncCnt = OU; *y4 = s32TargetSpOut; l ulIncSetLong = FALSE; *v5 = 932ThrotCcOut: def.SourceFiles = {'CrsCntrl_Wrapper.c', 'CruiseCntrlr.c'}; Script file def.HeaderFiles = {'CrsCntrl_Wrapper.h', 'CruiseCntrlr.h'}; /* setting decrease button is pressed def.IncPaths = {[defaultDir, '\files\legacycode']}; if (u1Decsw == TRUE) def.SrcPaths = {[defaultDir, '#files#legacycode']}; if (u8DecCnt >= 50) %def.StartFcnSpec = 'void sbr_initialize(void)': 1 u1DecSetLong = TRUE; def.OutputFcnSpec = ['void CrsCntrl(boolean_t u1, boolean_t u2, boolean_t u3, boolean_t u4, boolean_t u5, boolean_t u6,'... else 'int16_t u7, uint8_t u8, uint8_t u9, int32_t u10, int32_t u11,'... 'uint8_t y1[1], boolean_t y2[1], uint8_t y3[1], int32_t y4[1], int32_t y5[1])']; u8DecCnt = u8DecCnt + 1; def.Options.supportCoverageAndDesignVerifier = true; %neccesary for code coverage analysis and test case generation 1 u1DecSetLong = FALSE; def.Options.isMacro = true; % Generate the C-MEX S-function else legacy_code('sfcn_cmex_generate',def); legacy_code('rtwmakecfg_generate', def) u8DecCnt = OU; l u1DecSetLong = FALSE;

Modeling

Introducing C Caller Block

- C Caller Block makes it easier to call C Functions in Simulink
- → It works for simulation and Code Generation

Key Features

Automate the process

Synchronize with custom code changes

Demo: Simple C Caller

Demo: Integrate C code with Simulink Model

C Caller workflow

Agenda

- Legacy code integration using Simulink
- Visualization using Simulink
- Verification with legacy code

Visualize Simulation Data

Visualize Simulation Data

Visualize Simulation Data

Tune and Visualize Your Model with Dashboard Blocks

Custom Gage

Flight Instrument Gauges - Aerospace Blockset -

Tune and Visualize Your Model with Dashboard Blocks

DEMO: Test harness creation with Dashboard

DEMO: Visualize Input and Output data

Visualization Summary

Agenda

- Legacy code integration using Simulink
- Visualization using Simulink
- Verification with legacy code

Test Case generation

Design Logic

Existing test coverage

Test case generation

Test Cases

Systematic Functional Testing with Simulink Test

DEMO: Code Coverage with C caller

DEMO: Coverage Report

DEMO: Test Case Generation

Key takeaways

Bring C/C++ code into Simulink

- With full integration into Model-Based Design workflows
- To visualize simulation result
- Enable unified verification environment

MATLAB EXPO 2019

데모 부스와 상담부스로 질문 하시기 바랍니다.

감사합니다

