MATLAB EXPO 2019

Beyond the "I" in AI

Chris Hayhurst

Artificial intelligence is a transformative technology

AI will create \$13 trillion in value by 2030

based on McKinsey's latest Al forecast - September 2018

Al has tremendous potential to increase productivity

Yet Al is struggling

Most Al Projects Fail. Here's How to Make Yours Successful.

July, 2018

3 Common Reasons Artificial Intelligence Projects Fail

May, 2018

TayTweets AI project taken down within 24 hours

The New Hork Times

Microsoft Created a Twitter Bot to Learn From Users. It Quickly Became a Jerk.

March 24, 2016

There are many ways Artificial Intelligence can fail

No data scientists Too much data

Poor ROI

Not enough data

Beyond the skill of the team

Incomplete tools

Problem is a poor fit for Al

Can't integrate with other systems

Problem is unsolvable

Al is more than just the intelligence of the algorithm

Bring human insights into Al

Raw Milk

Plant Variables

Al model

Predict Results

Near real-time

Powdered Milk

They had lots of data

Raw Milk

Plant Variables

Powdered Milk

Millions of data points

• 3 plants

6 years

But...

1. Predictions were wrong

- Predictions were wrong
- 2. Need to build a separate model for each plant

Plants behaved differently from each another

- Predictions were wrong
- Need to build a separate model for each plant
- Plant's operating state changes each year

Each year was like a completely different plant

Bulk density prediction results were inaccurate

- Many false positives
- Unused classes

Predicted Class

- Predictions were wrong
- 2. Need to build a separate model for each plant
- Plant's operating state changes each year
- Training data was biased

Resampling data resulted in higher predictive accuracy

- Resampled data
- Reduced the number of bins

Predicted Class

To be successful with AI, you must ...

Combine AI model building with scientific and engineering insights

Implementation is about designing the solution

Testing Data analysis Reporting

Developing concept Prototyping Deployment

Requirements building Modeling and simulation Verification and validation

Voyage's goal was to quickly get to market

Target retirement communities

Voyage's goal was to quickly get to market

- Target retirement communities
- Use off-the-shelf components wherever possible

Voyage's goal was to quickly get to market

- Target retirement communities
- Use off-the-shelf components wherever possible
- Bring in the right software tools across the entire workflow

Voyage completed their AI system first

But they needed to connect the AI to the rest of the system

Started with Simulink example that they could build upon

automatically generate code for the control algorithm.

Started with Simulink example that they could build upon

Deployed controller as ROS node and generated code

Train your AI faster with tight simulation loops

One example of leveraging simulation for data synthesis

Traditional workflow Al model Record Label Transfer Learning **Simulation workflow Preliminary** Al model **Auto-label Simulate**

To be successful with AI, you must ...

Use tool chains that span the entire design workflow

What was the larger system the vehicle had to operate in?

Statistics and Machine Learning Toolbox Signal Processing Toolbox MATLAB Coder **Embedded Coder**

EarlySense's AI can predict critical events before they happen

Continuous Monitoring

Early **Detection**

Early Intervention

Better Outcomes

To be successful with AI, you must ...

Find out more:

딥러닝과 강화학습

integra

인공지능과 딥러닝 김종남

onment

Summary

Al is a transformative technology

But AI projects can and do fail

Success requires more than just intelligence

How will you apply AI to your projects?

We have the right tools -> MATLAB and Simulink

- -Discover and apply insights to fully understand your system
- -Implement your complete system across the entire workflow
- -Design the systems which will integrate into a larger world