
1© 2015 The MathWorks, Inc.

FPGA, ASIC, SoC 개발을위한
모델기반설계도입방안

정승혁

2

Agenda

▪ Why Model-Based Design for FPGA, ASIC, or SoC?

▪ How to get started

– General approach – collaborate to refine with implementation detail

– Re-use work to help RTL verification

– Hardware architecture

– Fixed-point quantization

– HDL code generation

– Chip-level architecture

▪ Customer results

3

FPGA, ASIC, and SoC Development Projects

67% of ASIC/FPGA projects are behind schedule

75% of ASIC projects require a silicon re-spin

Over 50% of project time is spent on verification

Statistics from 2018 Mentor Graphics / Wilson

Research survey, averaged over FPGA/ASIC

84% of FPGA projects have non-trivial

bugs escape into production

4

Many Different Skill Sets Need to Collaborate

Algorithms

System Architecture

System Integration

REQUIREMENTSRESEARCHRESEARCH

SPECIFICATIONS

Verification

Analog

Hardware

Embedded

Software

Digital

Hardware

SPECIFICATIONS

SPECIFICATIONS

“We have different R&D groups involved

in these steps and need to connect them

and build efficiency throughout the entire

process.”

Huawei

Kevin Law

• Poor communication across teams

• Key decisions made in silos

• System-level issues found in late stages

• Hard to adapt to changing requirements

“In our previous, document-based design

workflow, each team developed its own

specification. This created communication

gap between the teams, as well as delays

and the increased risk of error”

Hitachi

Noritaka Kosugi,

Kazuyuki Hori, and Yuji Ishida

5

DESIGN

SoC Collaboration with Model-Based Design

Algorithms

System Architecture

System Integration

REQUIREMENTSRESEARCHRESEARCH

Analog

Hardware

Embedded

Software
Digital

Hardware

Implementation Architectures

Implementation Knowledge Generate Code

Export

Models
V

e
rific

a
tio

n
V

a
lid

a
tio

n
 &

HOW am I

making it?

Is it going to

work?

WHAT am I

making?

MAKE IT!
Have I made

it right?

Am I making

the right

thing?

6

Agenda

▪ Why Model-Based Design for FPGA, ASIC, or SoC?

▪ How to get started

– General approach – collaborate to refine with implementation detail

– Re-use work to help RTL verification

– Hardware architecture

– Fixed-point quantization

– HDL code generation

– Chip-level architecture

▪ Customer results

7

DESIGN

Algorithms

System Architecture

Implementation Architectures

MATLAB

✓ Large data sets

✓ Explore mathematics

✓ Control logic

✓ Data visualization

✓ Parallel architectures

✓ Timing

✓ Data type propagation

✓ Mixed-signal modeling

General Approach: Use the Strengths of MATLAB and Simulink

DESIGN

Algorithms

System Architecture

Implementation Architectures

Streaming

Algorithms

Streaming Hardware

Architectures

Fixed-Point Hardware

Architectures

Simulink

8

Partition Hardware-Targeted Design, System Context, Testbench

Hardware

Algorithm

Algorithm

Stimulus
Analysis

Software

Algorithm

Example: HDL self-guided tutorial

https://www.mathworks.com/matlabcentral/fileexchange/69651-hdl-coder-self-guided-tutorial

9

Streaming Algorithms: MATLAB or Simulink…or Both

10

Refine Algorithm and Verify Against Golden Reference

Algorithm

Stimulus

Verification

“Scoreboard”

Design Under Test

Reference

Algorithm

Streaming

Algorithms

Streaming Hardware

Architectures

Fixed-Point Hardware

Architectures

Self-checking

11

Verification

“Scoreboard”

Generate SystemVerilog DPI Components for RTL Verification

Algorithm

Stimulus

SystemVerilog verification environment

Scoreboard

Design Under

Test (DUT) RTL
Driver Monitor

Seq.

Items

Scoreboard

▪ Reuse MATLAB/Simulink models in verification

– Scoreboard, stimulus, or models external to the RTL

▪ Generate from frame-based or streaming algorithm

▪ Floating-point or fixed-point

▪ Individual components or entire testbench

– Runs natively in SystemVerilog simulator

– Eliminate re-work and miscommunication

– Save testbench development time

– Easy to update when requirements change

DPI C

DPI C

HDL

Verifier

DPI C

Reference

Algorithm

HDL

Verifier

DPI C

12

MATLAB / Simulink

What if there’s a mismatch?

HDL Simulator

DUT

RTL

HDL Verifier

cosimulation

▪ Co-simulate with 3rd-party HDL simulator

– Reuse MATLAB/Simulink test environment

– Run HDL design in a supported simulator*

– Generate co-simulation infrastructure and

handshaking

– Analyze both the design and test

environment

* Mentor Graphics® ModelSim® or Questa ® Cadence ® Incisive ® or XceliumTM

Algorithm

Stimulus

Verification

“Scoreboard”

Reference

Algorithm

13

Collaborate to Add Hardware Architecture

Optimize architecture

design for hardware goals

Specify HDL implementation options

14

Fixed-Point Streaming Algorithms: Manual Approach

15

Fixed-Point Streaming Algorithms: Automated Approach

Simulate with representative

data to collect required

ranges

Fixed-Point Designer

proposes data types

Choose to apply

proposed types or

set your own

Simulate and

compare results

16

Generating Native Floating Point Hardware

HDL Coder Native Floating Point

• Extensive math and trigonometric operator support

• Optimal implementations without sacrificing

numerical accuracy

• Mix floating- and fixed-point operations

• Generate target-independent HDL

17

Automatically Generate Production RTL

DESIGN

Algorithms

Implementation Architectures

Streaming

Algorithms

Streaming Hardware

Architectures

Fixed-Point Hardware

Architectures

Implementation

Knowledge

HDL

Coder

Synthesizable RTL

AXI Interfaces

Synthesis scripts

▪ Choose from over 250 supported blocks

– Including MATLAB functions and Stateflow charts

▪ Quickly explore implementation options

– Micro-architectures

– Pipelining

– Resource sharing

– Fixed-point or native floating point

▪ Generate readable, traceable Verilog/VHDL

– Optionally generate AXI interfaces with IP core

▪ Quickly adapt to changes and re-generate

▪ Production-proven across a variety of

applications and FPGA, ASIC, and SoC targets

18

Model and Simulate SoC Architecture

▪ Simulate behavior and latency

– Algorithm, memory, internal and external

connectivity

– Scheduling and OS effects

– Real streaming I/O data

▪ Diagnose software performance and

hardware utilization

▪ Adjust core algorithms so they work

in the actual hardware context

Implementation

Knowledge

DESIGN

Algorithms

System Architecture

Implementation Architectures

Hardware sample rate Initialization signals

Asynchronous events

AXI registers

External Memory

I/O SoC I/O

SoC Blockset

19

Agenda

▪ Why Model-Based Design for FPGA, ASIC, or SoC?

▪ How to get started

– General approach – collaborate to refine with implementation detail

– Re-use work to help RTL verification

– Hardware architecture

– Fixed-point quantization

– HDL code generation

– Chip-level architecture

▪ Customer results

20

Solution
We have introduced Model-Based Design with MATLAB and Simulink and the

Huawei R&D workflow. MATLAB and Simulink have a strong impact from

product requirement import, modeling, and data analysis, all the way to link-

level system simulation, algorithm selection, RTL code generation, testing,

and prototyping, and even sample chip tape-out and testing. Model-Based

Design can also improve the overall end-to-end efficiency quite a lot.

Results
▪ We generated code automatically from MATLAB, Simulink, and HDL

Coder. Auto-generated code was slightly higher than hand-written coder

in terms of hardware resources such as multipliers and memory, but

relatively similar in timing. It satisfied our algorithm verification

requirement. When we started using this approach for verification, we

reduced development time by 50%. It is a huge gain that meets our

manpower constraints and time-to-market requirement.

Link to full Q&A

Results of Top-Down Model-Based

Design at Huawei

Solution
We have introduced Model-Based Design with MATLAB and Simulink and the

Huawei R&D workflow. MATLAB and Simulink have a strong impact from

product requirement import, modeling, and data analysis, all the way to link-

level system simulation, algorithm selection, RTL code generation, testing,

and prototyping, and even sample chip tape-out and testing. Model-Based

Design can also improve the overall end-to-end efficiency quite a lot.

Results
▪ We generated code automatically from MATLAB, Simulink, and HDL

Coder. Auto-generated code was slightly higher than hand-written coder

in terms of hardware resources such as multipliers and memory, but

relatively similar in timing. It satisfied our algorithm verification

requirement. When we started using this approach for verification, we

reduced development time by 50%. It is a huge gain that meets our

manpower constraints and time-to-market requirement.

https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/h/80861v00_Huawei_QA.pdf

21

Solution
Adopted Model-Based Design to enable teams to verify the specification via a

model in a shared simulation environment. The system design and FPGA

design teams use the model as an executable specification. The model is

refined and elaborated throughout the design process, and HDL code is

automatically generated for logic synthesis and implementation.

Results
▪ 70% effort reduction for design projects

▪ Nearly equivalent FPGA performance, power, and resource usage

▪ Adopted across more than 10 product development projects

“We have adopted Model-Based

Design with MATLAB® and Simulink®

as our standard development

workflow for FPGA design. As a

result, we have improved

communication between teams,

reduced development time, and

reduced risk by evaluating system

performance early in the design

process.”
Link to article

Model-Based Design Results for Communications

System Development at Hitachi

Solution
Adopted Model-Based Design to enable teams to verify the specification via a

model in a shared simulation environment. The system design and FPGA

design teams use the model as an executable specification. The model is

refined and elaborated throughout the design process, and HDL code is

automatically generated for logic synthesis and implementation.

Results
▪ 70% effort reduction for design projects

▪ Nearly equivalent FPGA performance, power, and resource usage

▪ Adopted across more than 10 product development projects

http://www.mathworks.com/company/newsletters/articles/driving-the-adoption-of-model-based-design-for-communications-system-development-at-hitachi.html?s_tid=srchtitle

22

DESIGN

Getting Started Collaborating with Model-Based Design

Algorithms

System Architecture

System Integration

REQUIREMENTSRESEARCHRESEARCH

Analog

Hardware

Embedded

Software
Digital

Hardware

Implementation Architectures

Implementation Knowledge Generate Code

Export

Models

V
e
rific

a
tio

n
V

a
lid

a
tio

n
 &

❑ Refine algorithm toward implementation

❑ Verify refinements versus previous versions

❑ Generate verification models

❑ Add hardware implementation detail and

generate optimized RTL

❑ Simulate System-on-Chip architecture

➢ Eliminate communication gaps

➢ Key decisions made via cross-skill collaboration

➢ Identify and address system-level issues before

implementing subsystems

➢ Adapt to changing requirements with agility

23

Learn More

▪ Next steps to get started with:

– Verification: Improve RTL Verification by Connecting to MATLAB webinar

– Fixed-point quantization: Fixed-Point Made Easy webinar

– Incremental refinement, HDL code generation: HDL self-guided tutorial

– Getting started guide for evaluating HDL Coder: HDL Coder Evaluation Reference Guide

Find out more:

SoC Blockset 소개

정승혁

https://www.mathworks.com/videos/improve-rtl-verification-by-connecting-to-matlab-1551796133310.html?s_tid=srchtitle
https://www.mathworks.com/videos/fpga-for-dsp-applications-fixed-point-made-easy-1495129243550.html
https://www.mathworks.com/matlabcentral/fileexchange/69651-hdl-coder-self-guided-tutorial
https://www.mathworks.com/matlabcentral/fileexchange/58941-hdl-coder-evaluation-reference-guide?s_tid=srchtitle

24© 2015 The MathWorks, Inc.

데모부스와상담부스로질문하시기바랍니다.

감사합니다

