MATLAB EXPO 2018 KOREA

MATLAB EXPO 2018

MATLAB을 이용한 머신 러닝 ^(기본)

Senior Application Engineer 엄준상과장

Machine Learning is Everywhere

Solution is too complex for hand written rules or equations

Speech Recognition

Object Recognition

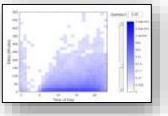
Engine Health Monitoring

learn complex nonlinear relationships

Solution needs to adapt with changing data

Weather Forecasting

Energy Load Forecasting

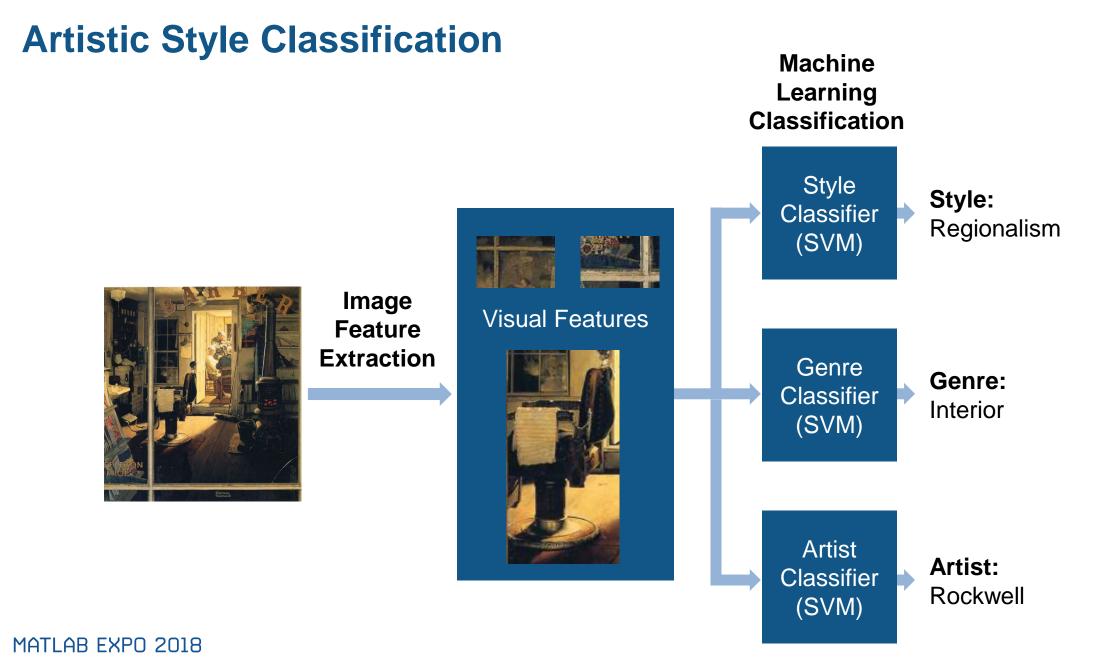


update as more data becomes available

Solution needs to scale

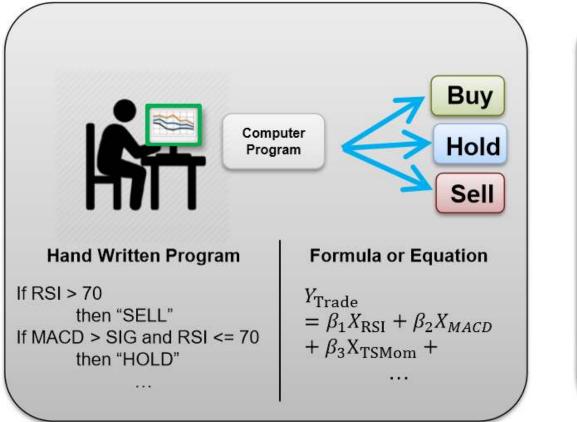
Airline Flight Delays

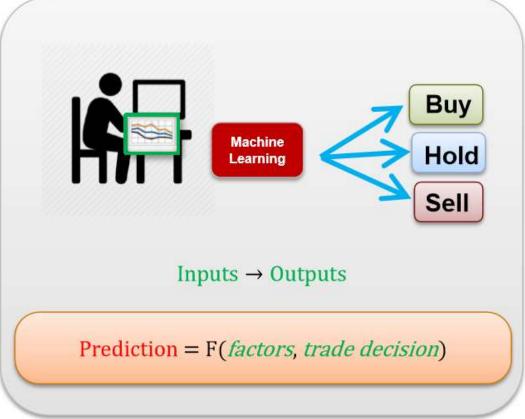
learn efficiently from very large data sets



Bazille's Studio Bazille 1870

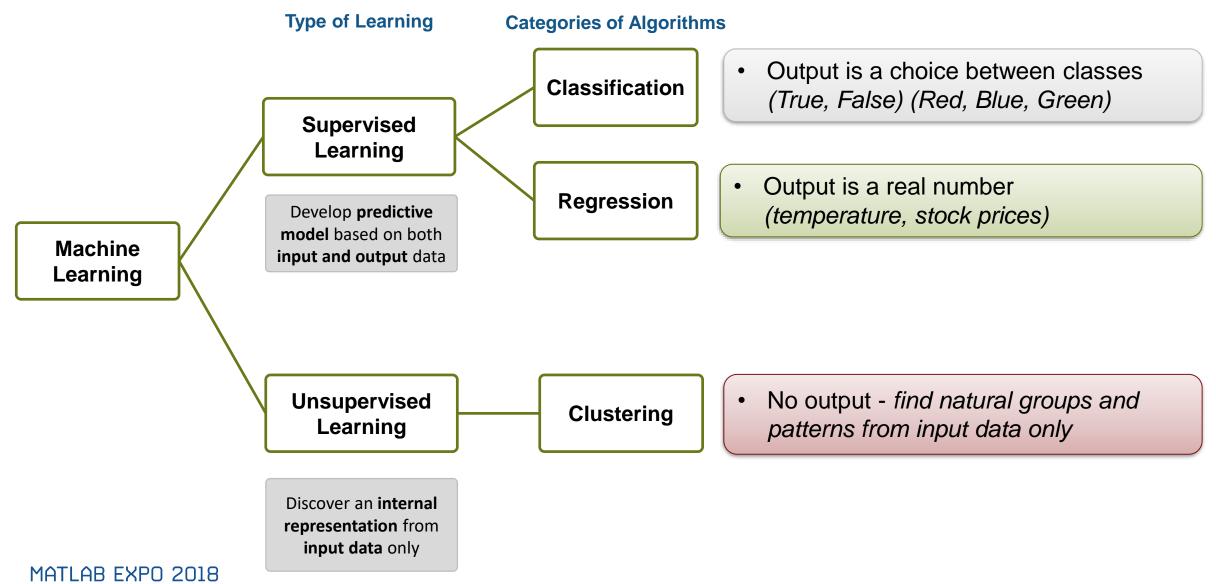
Shuffleton's Barbershop Rockwell 1950



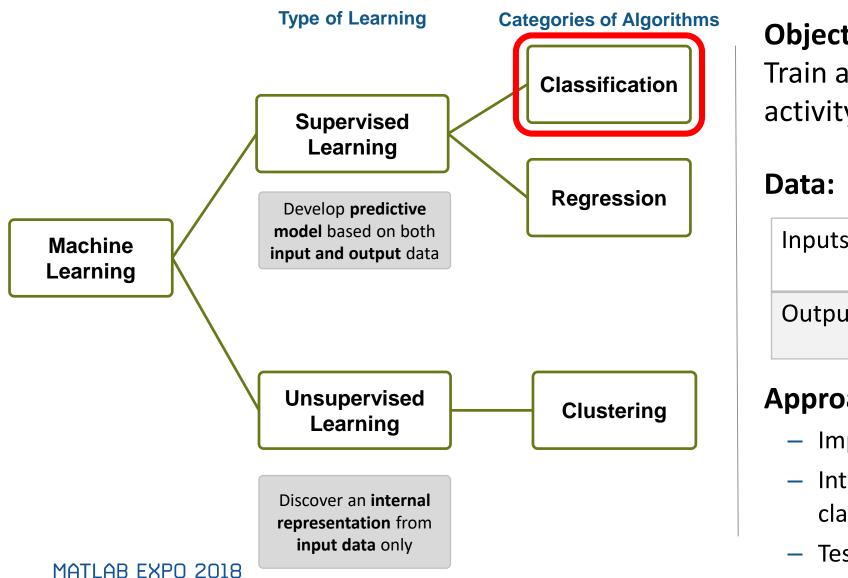

Machine Learning

Machine learning uses data and produces a program to perform a task

Standard Approach


Machine Learning Approach

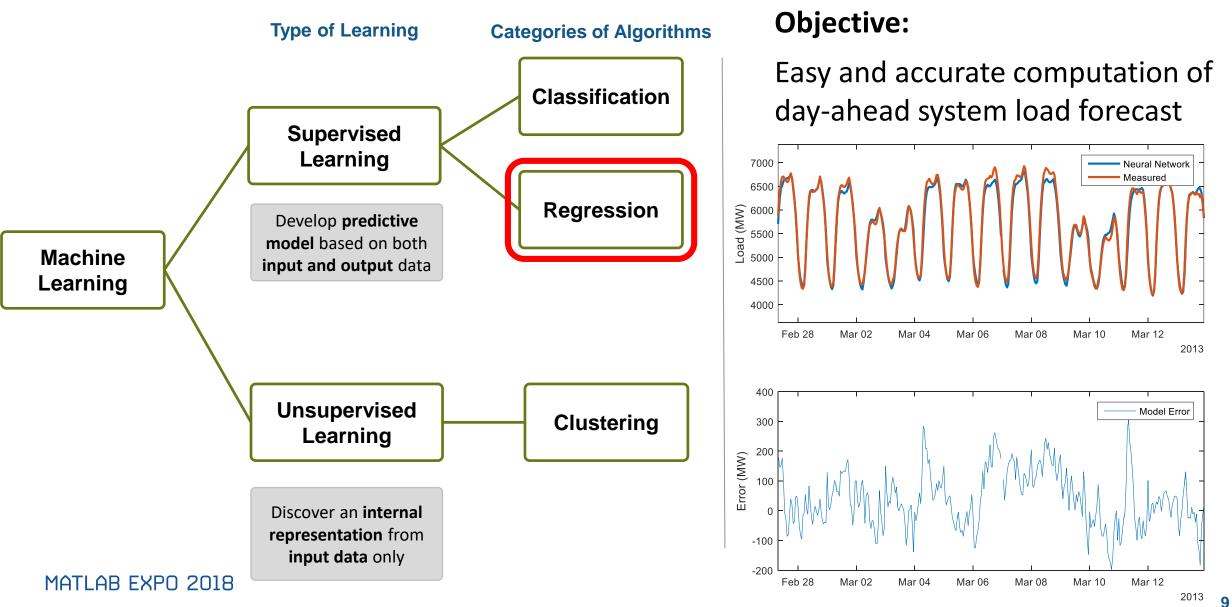
MATLAB EXPO 2018



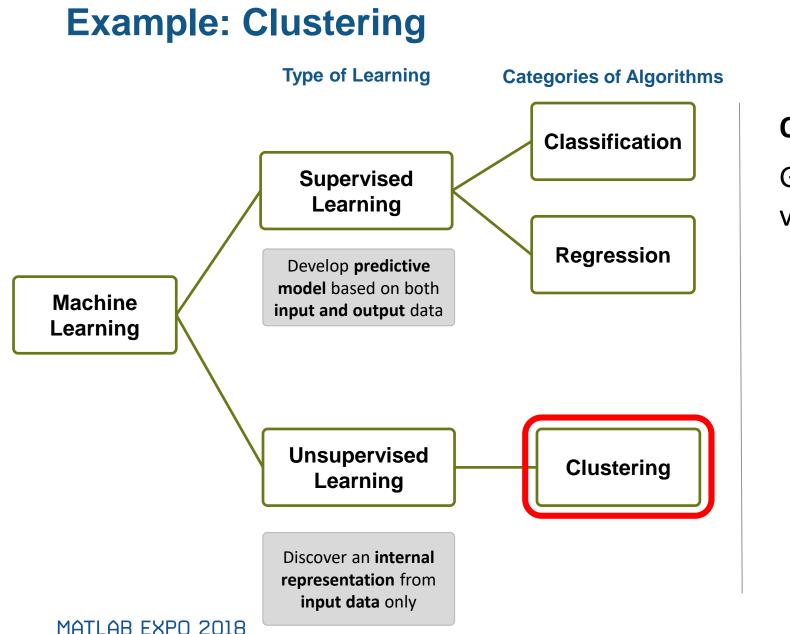
Different Types of Learning

Example: Classification

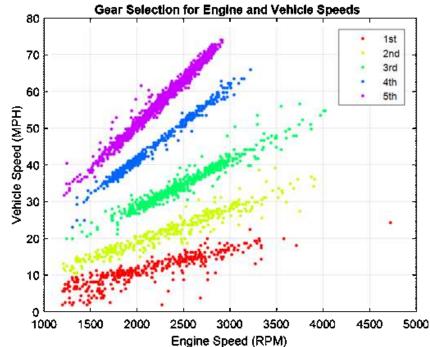
Objective: Train a classifier to classify human activity from sensor data

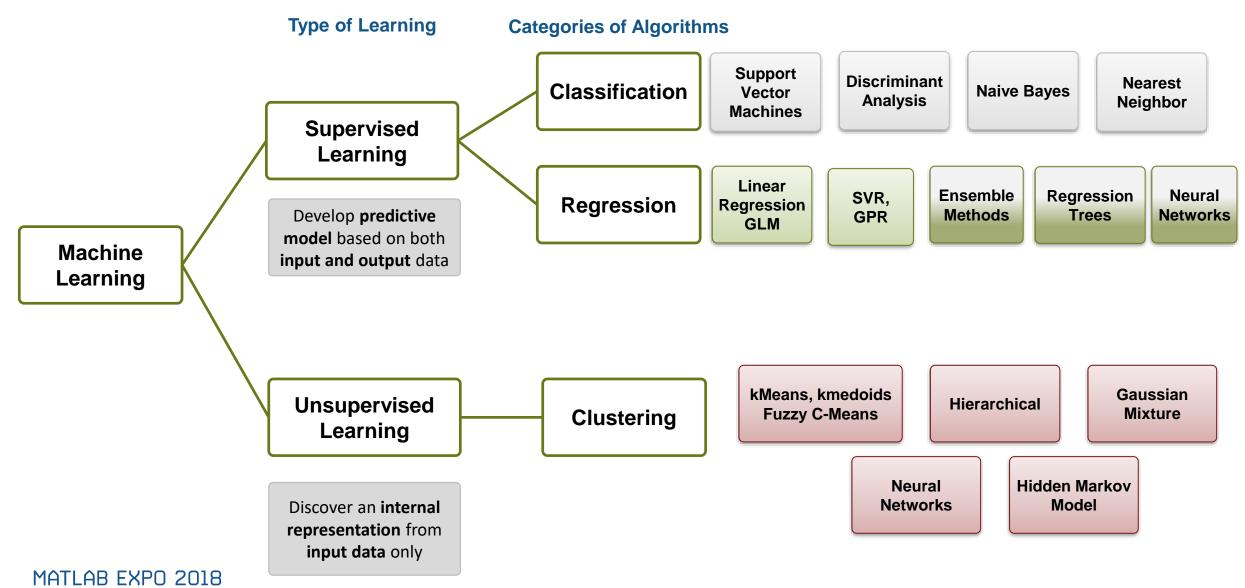

Inputs	3-axial Accelerometer 3-axial Gyroscope
Outputs	<u>×</u> × × · · · · · · · · · · · · · · · · ·

Approach:

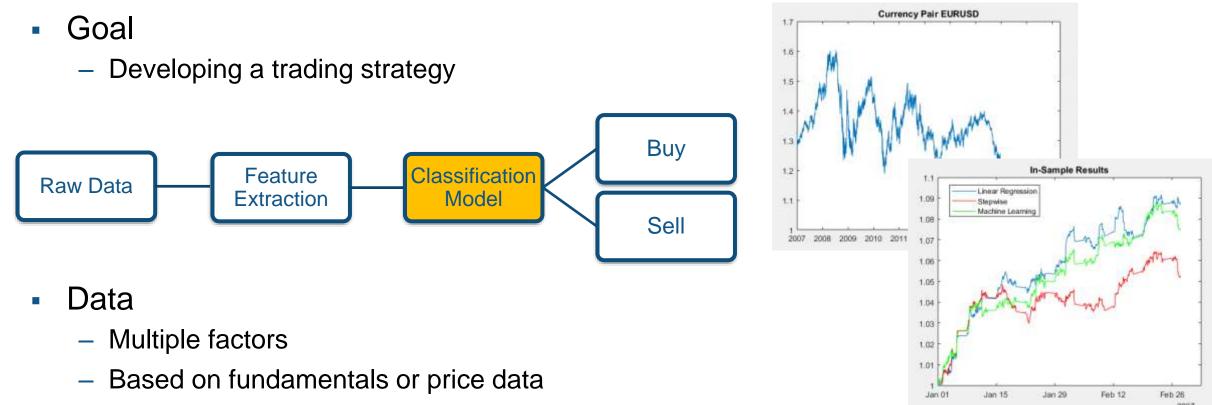

- Import data
- Interactively train and compare classifiers
- Test results on new sensor data

Example: Regression




Objective:

Given data for engine speed and vehicle speed, identify clusters



Different Types of Learning

Case Study Machine learning techniques for algorithmic trading

- Tested on historical data

The Challenge

- Persona: FX Trader
- Question: Can we predict the future price/return of a currency pair
 - E.g. 60 minutes into the future
- Using: Historical intra-day data
 - Recent returns
 - Technical Indicators
- Creating: A predictive model
 - Regression / machine-learning
 - Backtest over a suitable period of time

MATLAB EXPO 2018

Data

- Currency Pair: EURUSD
- Data: Ten years of one-minute bar prices
 - bid/ask/mid
- Stored: In timetable objects

10×3 timetable

Time		Mid	Bid	Ask
01-Jan-2007 00	0:00:00	1.31916	1.31908	1.31924
01-Jan-2007 00	0:01:00	1.31929	1.31921	1.31937
01-Jan-2007 00	0:02:00	1.31954	1.31946	1.31962
01-Jan-2007 00	0:03:00	1.31963	1.31958	1.31968
01-Jan-2007 00	0:04:00	1.31952	1.31945	1.31959
01-Jan-2007 00	0:05:00	1.3195	1.31942	1.31958
01-Jan-2007 00	0:06:00	1.31945	1.3194	1.3195
01-Jan-2007 00	0:07:00	1.31965	1.31962	1.31968
01-Jan-2007 00	0:08:00	1.31958	1.31953	1.31963
01-Jan-2007 00	0:09:00	1.319525	1.31945	1.3196

Factor Creation - Predictors

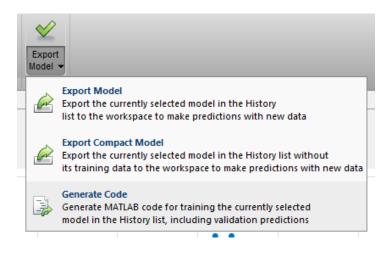
- A mixture of factors from the Financial Toolbox and hand written
- Toolbox
 - rsindex (5, 10, 15, 20, 25, 30 & 60 minute)
 - macd
- Derived
 - N-Minute return (5, 10, 15, 20, 25, 30 & 60 minute)

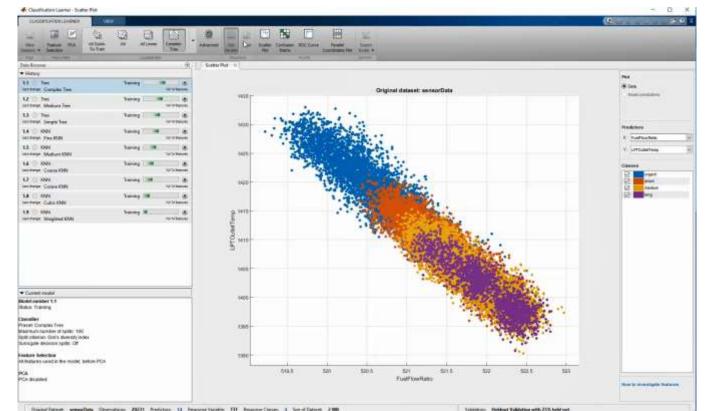
The Trading Model

- Train a model based around a number of factors
 - Technical Indicators & Short Term Returns
 - Attempt to predict positive or negative future returns using current information
 - Trade on this prediction
- Model Selection
 - Linear regression and stepwise
 - Classification Tree
- Backtesting
 - Test over ten years, taking into account bid/offer spread as trading cost
 - Varying our length of in-sample and out-sample

Step1 : Data Regression

Continuous Data to Discrete Data


- Linear Model and Stepwise Regression
 - fitlm, stepwiselm
- Two month In-Sample and one month Out-Sample


- timerange

Machine Learning App

- Point and click interface
 no coding required
- Quickly evaluate, compare and select regression models
- Export and share MATLAB code or trained models

MATLAB EXPO 2018

Regression Learner App

Same workflow as Classification Learner:

Linear Regression	
Trees	Use Parallel
SVMs	977283
Gaussian Process Reg	ression
Ensembles	

Data Browser		3
 History 		
1 🗇 Tree landsage: PCA explaining 95% variance	2/8 features (PCR or)	1
2.1 Linear Regression laricharge Linear	Training	
2.2 C Linear Regression lamonarge Interactions Linear	Training (8)	
2.3 C Linear Regression Lancharge Robust Linear	Training (8) using PCA	
2.4 💮 Stepwise Linear Regression Tancharge: Stepwise Linear	Training (8)	
2.5 🗇 Tree Landways Complex Tree	Training (8) using PCA	
2.6 💮 Tree Landsage Medium Tree	Queued (8) using PCA	
2.7 Tree Lastcharge Simple Tree	Queued (8) using FCA	
2.8 💮 SVM tem stange – Linear SVM	Queued (8) using FCA	
2.9 💮 SVM Landmarge: Quadratic SVM	Queued (8) using PCA	
2.10 💮 SVM Landharge Cubic SVM	Queued (8) using PCA	
2.11 🚖 SVM Lan manye Fine Gaussian SVM	Queued (8) using PCA	
2.12 💮 SVM Lamithanga - Medium Gaussian SVM	Queued (8) using PCA	
2.13 🚖 SVM	Queued 🛞	

Demo – Long, Short Classification

- Repeat this process, switching to machine learning and supervised learning
- Supervised learning
 - The machine learning task of inferring a function from **labelled** training data
- Our labelling
 - Look at the median bid/offer spread (in pips)
 - Classify our problem as
 - +1 where the future return is +ive & greater than the spread (i.e. go long)
 - 1 where the future return is -ive & greater than the spread (go short)
 - 0 all other cases

Building the classification model

- Form the predictor/response table
 - Yesterday's factor row, today's return

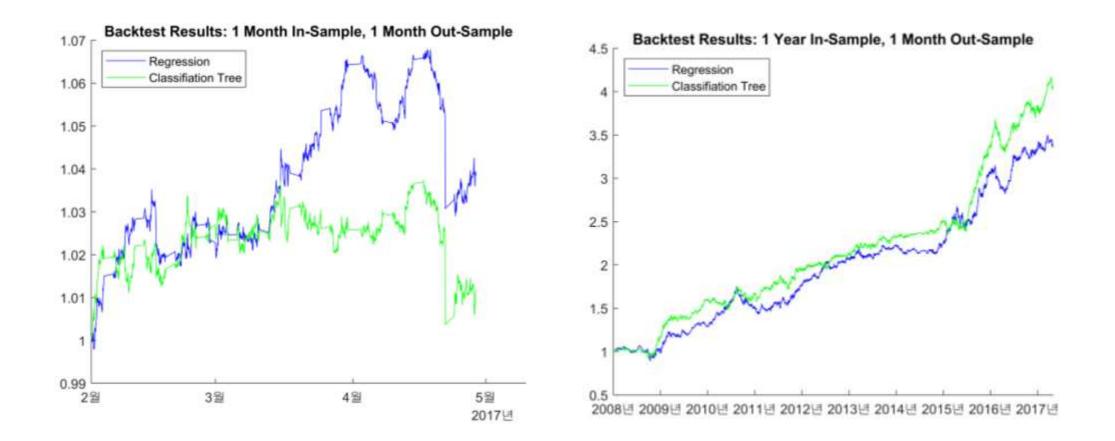
F1	F2	F3	F4	F5	 FN	R
F1(1)	F2(1)	F3(1)	F4(1)	F5(1)	 FN(1)	R(2)
F1(2)	F2(2)	F3(2)	F4(2)	F5(2)	 FN(2)	R(3)
F1(3)	F2(3)	F3(3)	F4(3)	F5(3)	 FN(3)	R(4)
F1(M-1)	F2(M-1)	F3(M-1)	F4(M-1)	F5(M-1)	 FN(M-1)	R(M)

Classification Learner App

- App to apply advanced classification methods to your data
 - Discriminant analysis
 - Dimension reduction via PCA
 - Parallel coordinates plot
 - Categorical predictors
 - Train classifiers in parallel

CLASSECATON LEARER				218	a martine	- 0
Terre Parater St. Complex Industries	Single Tree	> [the Continue			ent.
PLA PEADINE GARUNDA	19.9.100			Turne		000
Quia Browum (8)	Scirtler Pilot =					
▼ Hishary	Variable on Kaxis:			ter Plot of t for	Ferentia	
1 0 9M	Sepal angli	4.51	acat	ter Plot of the	r: ensemble	
Samshanjar, Preset changed to: Quadratic SVM 4/4 horuma						
2 Countile Among 94.7%	Variable on Yaxia					
Lemmanue Preset changed to: Ecosted Trees 8/47eesree	Separitivatin 🔻	- 4				
	Legend		:			• •
	Correctly classified settes versition verginica	SepaWdfh 2				
	Misclassified - true class is X setose X versicolor	an a				
▼ Current model	X VEDICE			".	· · · · · · · · · · · · · · · · · · ·	
Moder Hanther 2	2 Show Classifier Results Casafier Facults Color of resclassified points represents:	2.5		•		
Ensemble Vetfort Adabosal Learner Type, Decision Tree faunter of Learners, 30. **	True class		45 5	5.5 E SepaLen	65 7 7. gth	5 1

Also: Table and categorical support via command line



Demo – Historical Backtesting

- Use MATLAB scripting as a backtesting environment
- Loop through our dataset using datetime and dateshift
 - Run fitlm and fittree at each iteration
- Adding transaction costs where we trade
 - Once again, based on the bid/ask spread

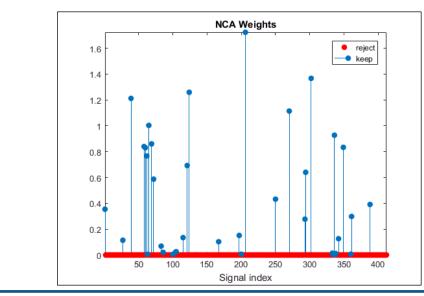
BackTest Result

Feature Selection

Why?

 Reduce data size (compute/storage gains) and model complexity (prevent overfitting)

When?


 High dimensional datasets with poor feature to observation ratio

Capabilities

- Accuracy comparable to state-of-art techniques
- Regularization to control sparsity and redundancy
- Handles high dimensional data and scales to large datasets

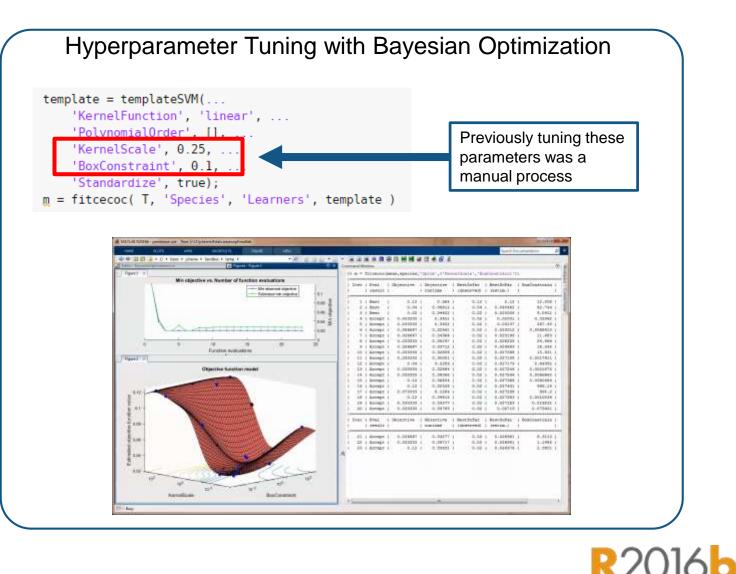
Feature Selection with Neighborhood Component Analysis

Xl	X2	X3	X4	X5	X6	X7	Y
3030.9	2564	2187.7	1411.1	1.3602	100	97.613	'pass'
3095.8	2465.1	2230.4	1463.7	0.8294	100	102.34	'pass'
2932.6	2559.9	2186.4	1698	1.5102	100	95.488	'fail'
2988.7	2479.9	2199	909.79	1.3204	100	104.24	'pass'
3032.2	2502.9	2233.4	1326.5	1.5334	100	100.4	'pass'
2946.3	2432.8	2233.4	1326.5	1.5334	100	100.4	'pass'
3030.3	2430.1	2230.4	1463.7	0.8294	100	102.34	'pass'
3058.9	2690.2	2248.9	1004.5	0.7884	100	106.24	'pass'
2967.7	2600.5	2248.9	1004.5	0.7884	100	106.24	'pass'
3016.1	2428.4	2248.9	1004.5	0.7884	100	106.24	'pass'

 $\mathbf{R}20$

Fine-tuning Model Parameters

Why?


 Manual parameter selection is tedious and may result in suboptimal performance

When?

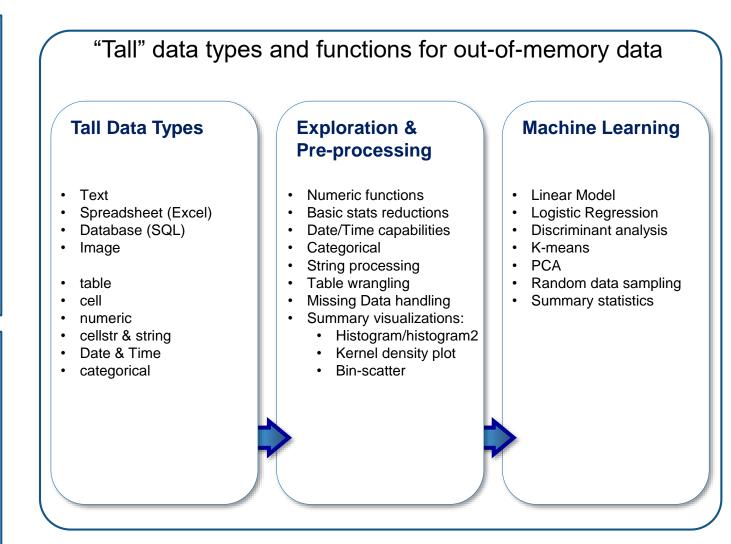
 When training a model with one or more parameters that influence the fit

Capabilities

- Efficient comparted to standard optimization techniques or grid search
- Tightly integrated with fit function API with pre-defined optimization problem (e.g. bounds)

Machine Learning with Big Data

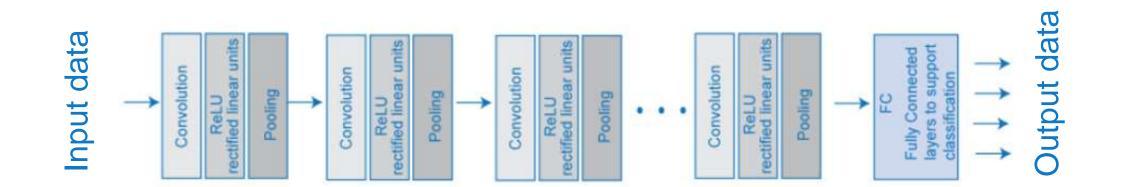
Why?


 Learning on larger datasets often leads to better generalization but they don't fit in memory

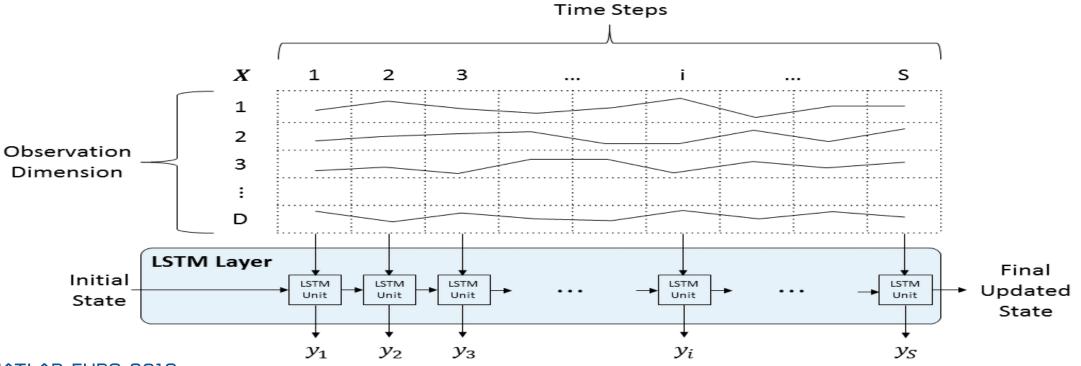
When?

Data does not fit in memory
Data lives remotely on clusters

Capabilities


- Functions for deriving summary statistics and generating visualizations
- Machine learning algorithms for classification, regression and clustering

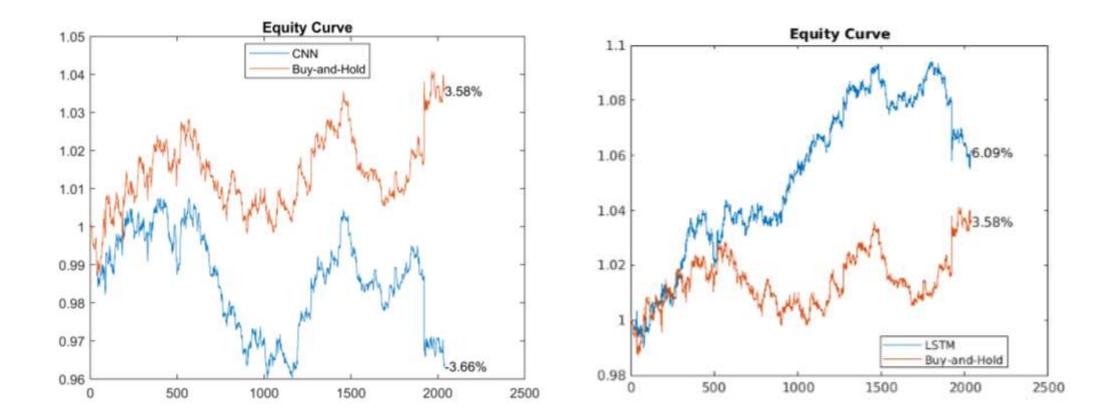
Convolutional Neural Networks (CNN)


- CNN take a fixed size input and generate fixed-size outputs.
- Convolution puts the input images through a set of convolutional filters, each of which activates certain features from the input data.

Time Series Analysis – LSTM Layers

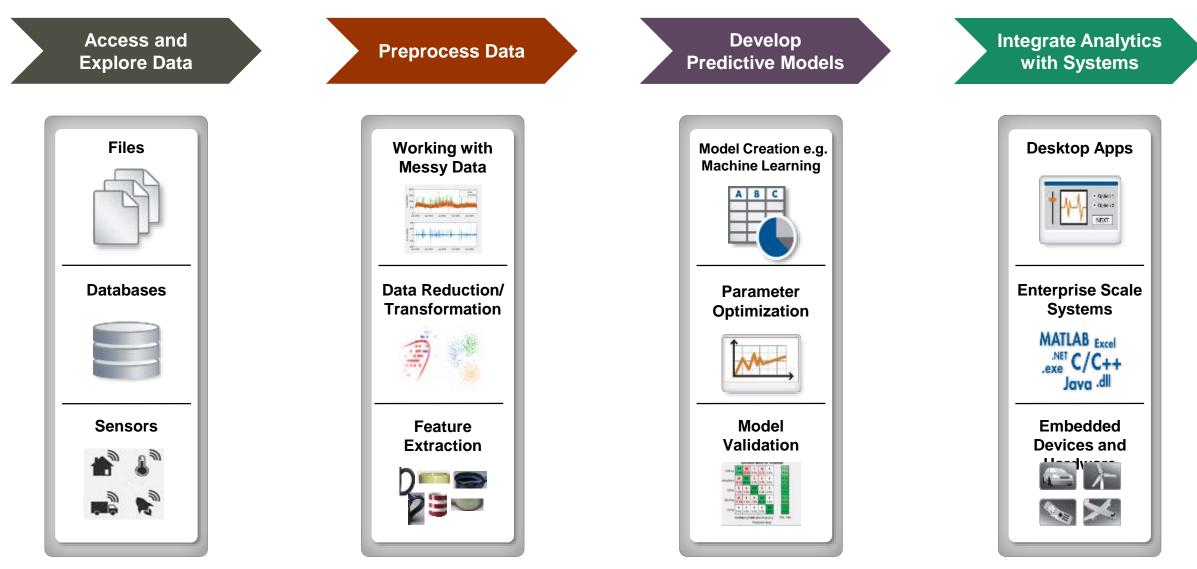
To train a deep neural network to classify sequence data, you can use an LSTM network. An LSTM network enables you to input sequence data into a network, and make predictions based on the individual time steps of the sequence data

MATLAB EXPO 2018

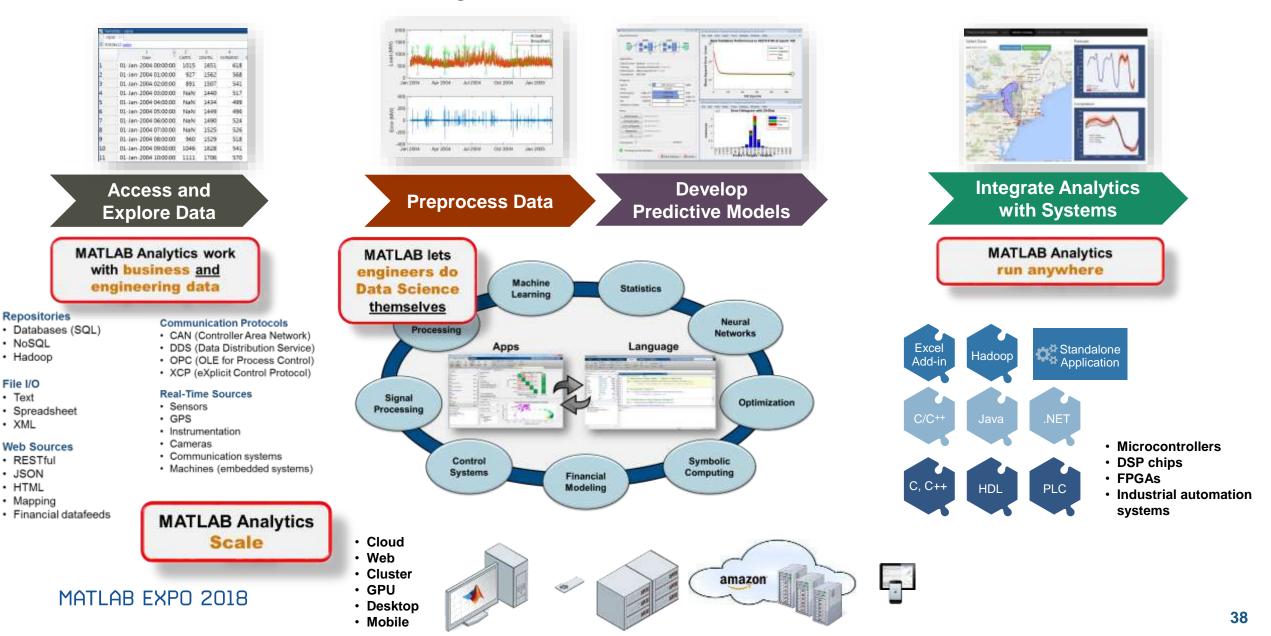


Deep Learning

	Classification	Regression
ConvNets	<pre>% Define network architecture layers = [imageInputLayer([28 28 1])</pre>	<pre>% Define network architecture layers = [imageInputLayer([28 28 1])</pre>
LSTM Networks	<pre>% Define network architecture layers = [sequenceInputLayer(25)</pre>	<pre>% Define network architecture layers = [sequenceInputLayer(25)</pre>


CNN and LSTM Result

MATLAB EXPO 2018



Data Analytics Workflow

📣 MathWorks

Solution for Data Analytics

Additional Resources

Documentation:

https://www.mathworks.com/solutions/machine-learning.html https://www.mathworks.com/solutions/deep-learning.html

CONTENTS CONTENTS Report of the statistics and Machine Learning Toolbox? Provides functions and pape to descriptive statistics and machine learning apportunes for Morie Carlo functions and Other Reference Rease Noise Carlo functions in descriptive statistics and machine learning Toolbox? Provides supervised and unsupervised machine learning Toolbox provides functions and Other Reference Rease Noise Carlo functions in descriptive statistics and Machine Learning Toolbox provides functions and Other Reference Rease Noise Carlo functions in descriptive statistics and Machine Learning Toolbox provides eature selection, stepwise regression, principal component analysis (PCA), regularization, and ther Reference Rease Noise Carlo functions of the statistics and Machine Learning Toolbox provides eature selection, stepwise regression, principal component analysis (PCA), regularization, and ther Reference Rease Noise Dro for web statistics and Machine Learning Toolbox provides eature selection, stepwise regression, principal component analysis (PCA), regularization, and ther Reference Rease Noise Dro for web statistics and Machine Learning Toolbox provides eature selection, stepwise regression, principal component analysis (PCA), regularization, machine learning algorithms including machine learning algorithms and tead estistics and Machine Learning Toolbox. Setting Statistics and Machine Learning Toolbox provides use that are too big to be stored in memory. Setting Statistics and Machine Learning Toolbox. Setting Statistics and Machine Learning Toolbox. Setting Statistics and Machine Learning Toolbox. Setting Statistics and Machine Learning algorithms including machine learning algorithms including machine learning algorithms including machine learning algorithms and tead sets that are too big to be stored	Documentation Search R2016b	Documentation		achine Learning with ATLAB	Search MathWork	is.com
Charles and noted that using statistics and machine learning Statistics and Machine Learning Toolbox? Provides functions and apps to describe, makyse, and model data using statistics and machine learning Statistics and Machine Learning Toolbox? Provides functions and apps to describe, manualyse, and model data using statistics and machine learning toolbox provides manuality distributions to data, generate random numbers for Mone Carlie model data. For multidimensional dra dama provides tests. Regression and dassification algorithms, including support vector machines (SVMs), boosted and bagged decision trees, k-nearest neighbor, means, k-medicis, hierarchical clustering, Gussien multure models, hierarchical clustering, Gussien, multure models, hierarchical clustering, Gussien, multure models, hierarchical clustering, Gussien, and moze, They use machine learning to find patterns in data and to build models that predict future outcomes based on historical data, with MATLAB*, you have immediate access to prebuilt intentions, watensive toolboxes, and specialized apps for classification, regression, and clustering, You can: Compare approaches such as logislif regression, classification teers, suppor	■ CONTENTS		140			
Analyze and model data using statistics and machine learning Statistics and Machine Learning Toolbox. ¹¹² provides functions and opts to describe, analyses, aft model data. Voic can describe the statistics and plots for exponsion you data analyses, fit probability distributions to data, generate random numbers for Monic Carlo analyses, fit probability distributions to data, generate random numbers for Monic Carlo analyses, fit probability distributions to data, generate random numbers for Monic Carlo analyses, fit probability distributions to data, generate random numbers for Monic Carlo analyses, fit probability distributions to data, generate random numbers for Monic Carlo and other Identify analysis, Statistics and Machine Learning Toolbox provides feature selection, protocal Component analysis (PCA), regularization, and other Identify at a let build predictive models. The toolbox provides supervised and unsupervised machine learning algorithms, including support vector machines (SVMs), boosthering, Gaussian mixture models, and Höder Markov models. Many of the statistics and machine learning toolbox the statistics and machine learning toolbox the statistics and machine learning toolbox. Becting Stated Learn the satist of Statistics and Machine Learning Toolbox Descriptive Statistics and Machine Learning Toolbox Descriptive statistics, visualization Deta import and export, descriptive statistics, visualization Probability Distributions Data frequency models, random sample generation, parameter estimation	Statistics and Machine Learning Toolbox		R2016b	IN MA	000	Choosing the Best
Statistics and Machine Learning Toolbox," provides functions and apps to describe, analyze, and model data. You can use descriptive statistics and plots for exploratory data analysis, fit probability distributions to data, generate random numbers for Monte Carlo analysis, fit probability distributions to data, apperson and classification algorithms let you draw inferences from data and build predictive models. For multidimensional data analysis, Statistics and Machine Learning Toolbox provides feature selection, stepwise regression, principal component analysis (PCA), regularization, and other microssion, hireraficial clustering, Gaussian mixture models, and hidden Markov models. Namy of the statistics and machine learning algorithms, including support vector machines (SVMs), boosted and bagged decision trees, k-nearest neighbor, k-means, k-medokis, hierarchical clustering, Gaussian mixture models, and hidden Markov models. Many of the statistics and Machine Learning Toolbox themas, k-medokis, hierarchical clustering, Gaussian mixture models, and hidden Markov models. Many of the statistics and Machine Learning Toolbox Exting Statistics and Machine Learning Toolbox Exting Statistics and Machine Learning algorithms, including support vector machines (SVMs), boosted and bagged decision trees, k-nearest neighbor, k-means, k-medokis, hierarchical clustering, Gaussian mixture models, and hidden Markov models. Many of the statistics and Machine Learning algorithms can be used for computations on data sets that are too big to be stored in memory.	· · · · · · · · · · · · · · · · · · ·			1 - Artor		Classification Model
analysis, fit probability distributions to data, generate random numbers for Monte Carlo simulations, and perform hypothesis tests. Regression and classification algorithms let you draw inferences from data and hysis, Statistics and Machine Learning Toolbox provides feature selection. Stepwise regression, principal component analysis (PCA), regularization, and other dimensionality reduction methods that let you identify variables or features that impact your model. The toolbox provides supervised and unsupervised machine learning algorithms, including support vector machines (SVMs), boosted and bagged decision trees, k-nearest neighbor, k-means, <i>k-medolis</i> , hierarchical clustering, Gaussian mixture models, and hide Markov models. Many of the statistics and machine learning algorithms can be used for computations on data sets that are too big to be stored in memory.	Statistics and Machine Learning Toolbox™ provides functions and apps to describe,	Examples				and Avoiding Overfitting
For multidimensional data analysis, Statistics and Machine Learning Toolbox provides feature selection, stepwise regression, principal component analysis (PCA), regularization, and other dimensionality reduction methods that let you identify variables or features that impact your model. The toolbox provides supervised and unsupervised machine learning algorithms, including support vector machines (SMAs), boosted and bagged decision trees, k-maest neighbor, k-means, k-medoids, hierarchical clustering, Gaussian mixture models, and hidden Markov models. Many of the statistics and machine learning algorithms can be used for computations on data sets that are too big to be stored in memory. Engineers and data scientists work with large amounts of data in a variety of formats such as sensor, image, video, telemetry, databases, and more. They use machine learning to find patterns in data and to build models that predict future outcomes based on historical data. With MATLAB [®] , you have immediate access to prebuilt functions, extensive toolboxes, and specialized apps for classification, regression, and clustering. You can: • Compare approaches such as logistic regression, classification trees, k-neared to build models, random sample generation, parameter estimation	analysis, fit probability distributions to data, generate random numbers for Monte Carlo simulations, and perform hypothesis tests. Regression and classification algorithms let you	Release Notes	D		\rightarrow	» Download white paper
Promoundmentstoral data analysis, Statustics and Machine Learning 1000000, provides Machine Learning Relative selection, stepwise repression, principal component analysis (PCA), regularization, Statustics and Machine Learning and other dimensionality reduction methods that let you identify variables or features selection, Figure selection mipact your model. Engineers and data scientists work with large amounts of data in a support vector machines (SVMs), boosted and bagged decision trees, <i>k</i> -nearest neighbor, Nachine Learning K-means, k-medoids, hierarchical clustering, Gaussian mixture models, and hiden Markov Engineers and data scientists work with large amounts of data in a variety of formats such as sensor, image, video, telemetry, databases, and more. They use machine learning to find patterns in data and to build models that predict future outcomes based on historical data. With MATLAB [®] , you have immediate access to prebuilt functions, extensive toolboxes, and specialized apps for classification, regression, and clustering. You can: Figure sensore immediate access to prebuilt functions, extensive toolboxes, and specialized apps for classification, regression, and clustering. Figure sensore immediate access to prebuilt functions, extensive toolboxes, and specialized apps for classification, regression, and clustering. Figure sensore immediate access to prebuilt functions, extensive toolboxes, and specialized apps for classification, regression, and clustering. Figure sensore immediate access to prebuilt functions, extensive toolboxes, and deep learning. Descriptive Statistics and Visualization Compare approaches such as logistic		PDF Documentation				Explore Products for
impact your model. The toolbox provides supervised and unsupervised machine learning algorithms, including support vector machines (SVMs), boosted and bagged decision trees, <i>k</i> -nearest neighbor, <i>k</i> -means, <i>k</i> -meadvist, hierarchical clustering. Gaussian mixture models, and hidden Markov models. Many of the statistics and machine learning algorithms can be used for computations on data sets that are too big to be stored in memory. Engineers and data scientists work with large amounts of data in a variety of formats such as sensor, image, video, telemetry, databases, and more. They use machine learning to find patterns in data and to build models that predict future outcomes based on historical data. With MATLAB®, you have immediate access to prebuilt functions, extensive toolboxes, and specialized apps for classification, regression, and clustering. You can: Data import and export, descriptive statistics, visualization Data frequency models, random sample generation, parameter estimation	feature selection, stepwise regression, principal component analysis (PCA), regularization,					
support vector machines (SVMs), boosted and bagged decision trees, k-nearest neighbor, k-means, k-medoids, hierarchical clustering, Gaussian mixture models, and hidden Markov models. Many of the statistics and machine learning algorithms can be used for computations on data sets that are too big to be stored in memory. Getting Started Learn the basics of Statistics and Machine Learning Toolbox Descriptive Statistics and Visualization Data import and export, descriptive statistics, visualization Data frequency models, random sample generation, parameter estimation Data frequency models, random sample generation, parameter estimation Support vector machines (SVMs), boosted and bagged decision trees, k-nearest neighbor, k-means, k-medoids, hierarchical clustering, Statistics and Mathine Learning algorithms can be used for computations on data sets that are too big to be stored in memory. Engineers and data scientists work with large amounts of data in a variety of formats such as sensor, image, video, telemetry, databases, and more. They use machine learning to find patterns in data and to build models that predict future outcomes based on historical data. With MATLAB®, you have immediate access to prebuilt functions, extensive toolboxes, and specialized apps for classification, regression, and clustering. You can: • Compare approaches such as logistic regression, classification trees, support vector machines, ensemble methods, and deep learning. • Use model refinement and reduction techniques to create an	impact your model.			Download trial		Statistics and Machine Learning Toolbox™
k-means, k-medoids, hierarchical clustering, Gaussian mixture models, and hidden Markov Computer Vision System models. Many of the statistics and machine learning algorithms can be used for Engineers and data scientists work with large amounts of data in a computations on data sets that are too big to be stored in memory. Engineers and data scientists work with large amounts of data in a Getting Started wariety of formats such as sensor, image, video, telemetry, databases, and more. They use machine learning to find patterns in data and to build models that predict future outcomes based on historical data. Learn the basics of Statistics and Visualization with MATLAB ⁶ , you have immediate access to prebuilt functions, extensive toolboxes, and specialized apps for classification, regression, and clustering. You can: Probability Distributions Computer vision System Toolbox Data frequency models, random sample generation, parameter estimation Computer Vision System Toolbox Use model refinement and reduction techniques to create an Computer Vision System Toolbox						Neural Network Toolbox™
Engineers and data scientists work with large amounts of data in a variety of formats such as sensor, image, video, telemetry, databases, and more. They use machine learning to find patterns in data and to build models that predict future outcomes based on historical data. With MATLAB [®] , you have immediate access to prebuilt functions, extensive toolboxes, and specialized apps for classification, regression, and clustering. You can: Probability Distributions Data inequency models, random sample generation, parameter estimation Probability Distributions Data frequency models, random sample generation, parameter estimation How and the statistics and reduction techniques to create an Fuzzy Logic Toolbox [™] Fuzzy Logic Toolbox [™]	k-means, k-medoids, hierarchical clustering, Gaussian mixture models, and hidden Markov					Computer Vision System
Getting Started and more. They use machine learning to find patterns in data and to build models that predict future outcomes based on historical data. Learn the basics of Statistics and Machine Learning Toolbox With MATLAB®, you have immediate access to prebuilt functions, extensive toolboxes, and specialized apps for classification, regression, and clustering. You can: Descriptive Statistics, visualization • Compare approaches such as logistic regression, classification trees, support vector machines, ensemble methods, and deep learning. Probability Distributions • Use model refinement and reduction techniques to create an						
Getting Started build models that predict future outcomes based on historical data. Learn the basics of Statistics and Machine Learning Toolbox With MATLAB [®] , you have immediate access to prebuilt functions, extensive toolboxes, and specialized apps for classification, regression, and clustering. You can: Descriptive Statistics, visualization • Compare approaches such as logistic regression, classification trees, support vector machines, ensemble methods, and deep learning. Probability Distributions • Use model refinement and reduction techniques to create an				•	그는 그는 것은 것은 것이 같은 것이 같아요. 그는 것은 것은 것은 것을 가지 않는 것이 같아요.	racty cogio roomon
Learn the basics of Statistics and Machine Learning Toolbox With MATLAB®, you have immediate access to prebuilt functions, extensive toolboxes, and specialized apps for classification, regression, and clustering. You can: Descriptive Statistics, visualization • Compare approaches such as logistic regression, classification trees, support vector machines, ensemble methods, and deep learning. Data frequency models, random sample generation, parameter estimation • Use model refinement and reduction techniques to create an	Getting Started					
Descriptive Statistics and Visualization regression, and clustering. You can: Data import and export, descriptive statistics, visualization • Compare approaches such as logistic regression, classification Probability Distributions • Compare approaches such as logistic regression, classification Data frequency models, random sample generation, parameter estimation • Use model refinement and reduction techniques to create an						
Data import and export, descriptive statistics, visualization • Compare approaches such as logistic regression, classification trees, support vector machines, ensemble methods, and deep learning. • Use model refinement and reduction techniques to create an					classification,	
Compare approaches such as logistic regression, classification trees, support vector machines, ensemble methods, and deep learning. Use model refinement and reduction techniques to create an			regre	ession, and clustering. You can:		
Data frequency models, random sample generation, parameter estimation Data frequency models, random sample generation, parameter estimation • Use model refinement and reduction techniques to create an	Data import and export, descriptive statistics, visualization		• C	ompare approaches such as logistic regr	ession, classification	
Use model refinement and reduction techniques to create an	Probability Distributions				methods, and deep	
 Use model refinement and reduction techniques to create an 	Data frequency models, random sample generation, parameter estimation		le	arning.		
Hypothesis Tests	Hypothesis Tests					
t-test, F-test, chi-square goodness-of-fit test, and more data.				č.	dictive power of your	

