
1© 2015 The MathWorks, Inc.

[Sub Track 1-3]

FPGA/ASIC을타겟으로한알고리즘의효율적인
생성방법및신기능소개

정승혁과장
Senior Application Engineer

MathWorks Korea

2

Outline

▪ When FPGA, ASIC, or System-on-Chip (SoC) hardware is needed

▪ Hardware implementation considerations

▪ Workflow from system/algorithm to FPGA/ASIC hardware

▪ Demonstration: Vision processing algorithm deployed to FPGA

▪ Conclusion

3

Why Are Our Customers Deploying to FPGA/ASIC Hardware?

“Real-time image processing for an aircraft head’s up display”

“Evaluate the algorithm in field testing to analyze system performance”

“Optimal performance @ Piezo resonance frequency”

Speed

“11 year device with a 1 A*hr battery”

Power

“Be able to stop the robot with millimeter accuracy in less than 0.5
seconds without causing damage to the robot”

“Audio transducer prototypes must run in real time with low latencies”

“Motor control latency < 1us”

Latency

We need to get to market quickly, but we have no experience designing FPGAs!

4

Modern Applications Often Require Custom Hardware
ADAS Application Example

High-speed, well-defined

• Repetitive processing

• Large amount of data

Complex, more flexible

• Small data calculations

• Executive control

FPGA Hardware Embedded Software

Acquire ActPerceiveProcess

1M+ pixels per frame Few coords

t=
speed

distance

5

Outline

▪ When FPGA, ASIC, or System-on-Chip (SoC) hardware is needed

▪ Hardware implementation considerations

▪ Workflow from system/algorithm to FPGA/ASIC hardware

▪ Demonstration: Vision processing algorithm deployed to FPGA

▪ Conclusion

6

Frame-Based vs Streaming Algorithms

Streaming

• Sample-by-sample, row-

by-row

• Region of interest (ROI)

stored in a multi-line buffer

Frame-Based

• Whole frame at a time

• Random access to any

pixel via [x,y] coordinate

(0,0)
Frame Width

F
ra

m
e
 H

e
ig

h
t

Columns
R

o
w

s
(0,0)

Programmable logic

ProcessorMemory

c
o
o
rd

s

011100101

Hardware

• Bit-by-bit, but parallel computation

• Fixed and finite resources

• Buffers require memory storage

• Communications with software go

through dedicated memory

7

Specification documents passed across groups

Bridging the Gap from Algorithm to Implementation

Matrices

Frames

Streaming

samples

System/Algorithm

Engineer

Hardware

Engineer

Concept

&

Algorithm

Fixed-Point,

Optimized

Implementation

FPGA/ASIC

Implementation

Concept & Algorithm
• Develop system-level algorithms

• Simulate, analyze, modify

• Partition hardware vs software implementation

Collaboration

Algorithm to Micro-architecture
• Convert to streaming algorithms

• Add hardware micro-architecture

• Convert data types to fixed-point

Micro-architecture to implementation
• Speed and area optimization

• HDL code generation

• Verification

• FPGA/ASIC implementation

Algorithm w/ HW

Implementation

8

Outline

▪ When FPGA, ASIC, or System-on-Chip (SoC) hardware is needed

▪ Hardware implementation considerations

▪ Workflow from system/algorithm to FPGA/ASIC hardware

▪ Demonstration: Vision processing algorithm deployed to FPGA

▪ Conclusion

10

HDL Coder

Prototype

MATLAB Simulink

Algorithm

(Golden Reference)

Algorithm w/ HW

Implementation

Fixed-Point,

Optimized

Implementation

FPGA/ASIC

Implementation

Verify

HDL-ready

IP blocks

HDL Coder

Production

HDL Coder

Fixed Point

Designer

VHDL /

Verilog

Core

interface
Constraints

11

Outline

▪ When FPGA, ASIC, or System-on-Chip (SoC) hardware is needed

▪ Hardware implementation considerations

▪ Workflow from system/algorithm to FPGA/ASIC hardware

▪ Demonstration: Vision processing algorithm deployed to FPGA

▪ Conclusion

12

Demo : Pothole Detection using Traditional Image Processing

▪ Bilateral filter followed by Sobel edge detection as in 17b

▪ New trapezoidal mask plus Morphological Closing

▪ New Centroid 31x31 and New Maximum Area Detection

▪ New Graphic Marker and Text (character) overlay

13

Algorithm Overview

Algorithm

(Golden Reference)

Algorithm w/ HW

Implementation

Fixed-Point, Optimized

Implementation

FPGA/ASIC

Implementation

14

Algorithm with Hardware Implementation: Top-Level

Input video player
Convert input

frames to stream

Expand

bus to pins

Convert back to play

output

Hardware subsystem

Design parameters

• Threshold for edge detection

• Threshold for pothole size

• Overlay output onto input video

or pre-processed video

• Color of overlay

Algorithm

(Golden Reference)

Algorithm w/ HW

Implementation

Fixed-Point, Optimized

Implementation

FPGA/ASIC

Implementation

15

Algorithm with Hardware Implementation: Hardware Subsystem

Image pre-processing
Trapezoidal

mask

Detect

centroids

Align timing of centroids

with input or pre-

processed image

Overlay

centroids

16

Streaming Math with Native Floating-Point for Prototyping
Centroid Kernel • ROM stores weights: 1./[1,1:1023]

• Don’t know level of precision required

• Prototype with native floating-point!HDL Coder Native Floating Point

• IEEE-754 Single precision support

• Extensive math and trigonometric

operator support

• Highly optimal implementations without

sacrificing numerical accuracy

• Mix floating and fixed point operations in

the same design

• Generate target-independent

synthesizable VHDL or Verilog

17

Prototype Target

18

Fixed-Point, Optimized Implementation: General Approach

• How much on-chip RAM?

• Typical achievable frequency

• Available I/O

• FPGA: How many DSP slices?

Know your hardware1

• Control system latency

• Comms system throughput

• Video frame size & rate

Know your performance requirements2

• Fixed-point quantization – esp. multipliers!

• Minimize/avoid use of off-chip RAM

• Parallelize operations for speed

• Use HDL Coder optimizations & reports

Simple steps, then address bottlenecks3

DSP Slice

×
+/-

Σ

18x18 or

25x18?

*Illustration only. Consult your device datasheet!

PSS cross-correlation

PSS_xcorr0 magnitude^2_0 Z-1Z-1

PSS_xcorr1 magnitude^2_1 Z-1Z-1

PSS_xcorr2 magnitude^2_2 Z-1Z-1

Algorithm

(Golden Reference)

Algorithm w/ HW

Implementation

Fixed-Point, Optimized

Implementation

FPGA/ASIC

Implementation

19

Automate Fixed-Point Quantization with Fixed-Point Designer

Simulate with

representative data to

collect required ranges

Fixed-Point Designer

proposes data types

Choose to apply

proposed types or

set your own

Simulate and

compare results

21

Production Target – IP Core Gen

Algorithm

(Golden Reference)

Algorithm w/ HW

Implementation

Fixed-Point, Optimized

Implementation

FPGA/ASIC

Implementation

22

HDL Coder

Prototype

MATLAB Simulink

Algorithm

(Golden Reference)

Algorithm w/ HW

Implementation

Fixed-Point,

Optimized

Implementation

FPGA/ASIC

Implementation

Verify

HDL-ready

IP blocks

HDL Coder

Production

HDL Coder

Fixed Point

Designer

VHDL /

Verilog

Core

interface
ConstraintsHDL Verifier

✓ Cosimulation

✓ Export DPI-C models

Floating

Point

23

18a Key Features

Theme Feature

Simulink modeling

Matrix support in HDL Coder

Model Advisor Integration

Line level traceability

Optimizations

Critical Path Estimation for Floating point algorithms

Constant folding and strength reduction for math operations

Floating point algorithmic improvements

Workflow

Microsemi workflow

Test points support in IP Core workflow

Synthesis reporting

https://kr.mathworks.com/help/hdlcoder/release-notes.html

24

Supported HDL Blocks with Matrix Types

▪ Functional blocks

– Product

– Gain

– Sum

– Transpose

– Delay

– Constant

▪ Wiring blocks

– Vector/Matrix Concatenate

– Selector

– Reshape

– No HDL Implementation

25

Matrix Product

Configuration of product block in

matrix mode

26

Matrix Support Use Case

Blue: Matrix Product

Green: Matrix Product with matrix Constant

Yellow: Matrix Vector product

Magenta: Matrix Addition

Orange: Matrix Inverse (diagonal matrix)

33 blocks You would need ~1500 blocks

if you were to manually

vectorize the model

27

Model Advisor - Workflow

• hdlmodelchecker

• Checks and fixes, Standalone infrastructure

• HDL Coder Model Advisor Integration

28

New Line level traceability Customers: Safety-Critical Application(Aero/Def, Auto, Medical)
Ex) DO 254 customers

29

Synthesis Timing and Area Summary Reporting

Resource summary file

Timing summary file

30

Support Microsemi Libero

- Microsemi Libero® SoC 11.8 SP2

- Microsemi Libero SoC Polarfire® 2.0

31

Testpoints – IP Core Support

1.Define test point signals in Simulink 2.Assign interface mapping in HDL workflow advisor

3.Generate HDL interface code with test point signals4.Debug or Test with Generated Port

32

Critical Path Estimation with NFP

CPE Report

Xilinx Implementation Timing Report

Path timing estimated within 10%

33

Outline

▪ When FPGA, ASIC, or System-on-Chip (SoC) hardware is needed

▪ Hardware implementation considerations

▪ Workflow from system/algorithm to FPGA/ASIC hardware

▪ Demonstration: Vision processing algorithm deployed to FPGA

▪ Conclusion

35

F
ra

m
e
-b

a
s
e
d

P
ix

e
l-
s
tr

e
a
m

S
y
s
te

m
/A

lg
o
rith

m

E
n
g
in

e
e
r

H
a
rd

w
a
re

E
n
g
in

e
e
r

Concept

&

Algorithm

Fixed-Point,

Optimized

Implementation

FPGA/ASIC

Implementation

Collaboration

Workflow From Frames to Pixels to Hardware

▪ New application innovation happens at the

system-level

– Implemented across software and hardware

▪ Successful implementation requires

collaboration

▪ Connected workflow to FPGA/ASIC/SoC

hardware delivers:

– Broader micro-architecture exploration

– Agility to make changes, simulate, generate code

– Continuous verification

HDL IP Blocks

Fixed-Point Designer

HDL Coder

Support Packages

MATLAB & Simulink

Application

Toolboxes

