
1© 2015 The MathWorks, Inc.

Automating Best Practices to

Improve Design Quality
임베디드 SW 개발에서의품질확보방안

이제훈차장

2

Key Takeaways

▪ Author, manage requirements in Simulink

▪ Early verification to find defects sooner

▪ Automate manual verification tasks

▪ Workflow that conforms to safety standards

High Level

Design

Detailed

Design

Coding

Integration

Testing

Unit

Testing

Verified & Validated

System
System

Requirements

“Reduce costs and project risk through early

verification, shorten time to market on a certified

system, and deliver high-quality production code that

was first-time right” Michael Schwarz, ITK Engineering

3

Model Based Design Workflow

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Code

Generation

4

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Model Based Design Verification Workflow

Equivalence

testing

Equivalence

checking

Component

and system

testing

Review and

static analysis

5

Challenges with Requirements

Where are

requirements

implemented?

How are

they tested?

Is design and

requirements

consistent?

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

6

Gap Between Requirements and Design

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

7

Simulink Requirements

Author

Track Manage

8

Requirements Editor

9

Import

Import Requirements from External Sources

IBM Rational DOORS

Simulink Requirements EditorMicrosoft Word

10

Link Requirements, Designs and Tests

REQ 3.1 ENABLING CRUISE CONTROL

Cruise control is enabled

when …..

ENABLE SWITCH DETECTION

If the Enable switch is

pressed ……

Implemented

By

Derives

Verified

By

Test Case

x

11

Track Implementation and Verification

Passed

Failed

No Result

Missing

Verification Status

Implemented

Justified

Implementation Status

Missing

12

Respond to Change

If the switch is pressed and the counter reaches 50
then it shall be recognized as a long press of the switch.

If the switch is pressed and the counter reaches 75
then it shall be recognized as a long press of the switch.

Implements
Original Requirement

Updated Requirement

13

Verify Design to Guidelines and Standards

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Review and

static analysis

Is the design

built right?

Is it too

complex?

Is it ready

for code

generation?

14

Automate verification with static analysis

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Check for:

• Readability and Semantics

• Performance and Efficiency

• Clones

• And more……
Model Advisor Analysis

15

Generate reports for reviews and documentation

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Model Advisor Analysis Model Advisor Reports

16

Navigate to Problematic Blocks

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

17

Guidance Provided to Address Issues or Automatically Correct

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

18

Built in checks for industry standards and guidelines

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

▪ DO-178/DO-331

▪ ISO 26262

▪ IEC 61508

▪ IEC 62304

▪ EN 50128

▪ MISRA C:2012

▪ CERT C, CWE, ISO/IEC TS 17961

▪ MAAB (MathWorks Automotive Advisory Board)

▪ JMAAB (Japan MATLAB Automotive Advisory Board)

19

Configure and customize analysis

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

20

Detect Design Errors with Formal Methods

▪ Find run-time design errors:

• Integer overflow

• Dead Logic

• Division by zero

• Array out-of-bounds

• Range violations

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

21

Prove That Design Meets Requirements

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

▪ Prove design properties

▪ Model functional and safety requirements

▪ Generates counter example

22

Static

Analysis

Checks for standards and guidelines are often performed late

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Rework

23

Static

Analysis

Edit-Time

Checking

Shift Verification Earlier With Edit-Time Checking

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

• Highlight violations as you edit

• Fix issues earlier

• Avoid rework

24

Assess Quality with Metrics Dashboard

▪ Consolidated view of metrics

– Size

– Compliance

– Complexity

25

Grid Visualization for Metrics

▪ Visualize Standards Check Compliance

– Find Issues

– Identify patterns

– See hot spots

Red: Fail

Orange: Warning

Green: Pass

Gray: Not run

Legend:

26

Functional Testing

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Does the

design meet

requirements?

Is it functioning

correctly?

Is it

completely

tested?

27

Test Case

Main Model

Systematic Functional Testing

Assessments
Inputs

Test Sequence

Signal Builder

MAT file (input) MAT file (baseline)

Test Assessment

MATLAB Unit Test

and more! and more!

Excel file (input) Excel file (baseline)

Test Harness

28

Manage Testing and Test Results

29

Coverage Analysis to Measure Testing

Simulink

Stateflow

Generated Code

Coverage Reports

▪ Identify testing gaps

▪ Missing requirements

▪ Unintended Functionality

▪ Design Errors

30

Test Case Generation for Functional Testing

▪ Specify functional test objectives
– Define custom objectives that signals must satisfy in test cases

▪ Specify functional test conditions
– Define constraints on signal values to constrain test generator

Test Condition

Test Objective

Test Objective

31

C/C++

Static Code Analysis

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Is the code

compliant

to MISRA?

Is integrated

code free of

run-time

errors?

Other code

Is interface between

generated and other

code fully tested?

The Generated Code is integrated

with Other Code (Handwritten)

32

Static Code Analysis with Polyspace

▪ Code metrics and standards

– Comment density, cyclomatic complexity,…

– MISRA and Cybersecurity standards

– Support for DO-178, ISO 26262, ….

▪ Bug finding and code proving

– Check data and control flow of software

– Detect bugs and security vulnerabilities

– Prove absence of runtime errors

Results from Polyspace Code Prover

33

Equivalence Testing

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Is the code

functionally

equivalent to

model?

Is all the

code tested?

34

Equivalence Testing

▪ Processor in the Loop (PIL)

– Numerical equivalence, model to target code

– Execute on target board

▪ Re-use tests developed for model to test code

▪ Collect code coverage

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Target

Board

▪ Software in the Loop (SIL)

– Show functional equivalence, model to code

– Execute on desktop / laptop computer

Desktop

Computer

PIL

SIL

35

Summary

1. Author and manage requirements within Simulink

2. Find defects earlier

3. Automate manual verification tasks

4. Reference workflow that conforms to safety standards

Requirements
Executable

Specification

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Component

and system

testing

Equivalence

testing

Equivalence

checking

Review and

static analysis

36

Customer References and Applications

LS Automotive Reduces Development Time for Automotive Component
Software with Model-Based Design

Specification errors detected early

Continental Develops Electronically Controlled Air Suspension for Heavy-
Duty Trucks

Verification time cut by up to 50 percent

Airbus Helicopters Accelerates Development of DO-178B Certified Software
with Model-Based Design

Software testing time cut by two-thirds

More User Stories: www.mathworks.com/company/user_stories.html

https://www.mathworks.com/company/user_stories.html

37

Learn More

Visit MathWorks Verification, Validation and Test Solution Page:

https://kr.mathworks.com/solutions/verification-validation.html

https://kr.mathworks.com/solutions/verification-validation.html

38

% Thank you

