

Radar System Design Using MATLAB and Simulink

김용정 부장(James.kim@mathworks.com) Application Engineer MathWorks

© 2016 The MathWorks, Inc.

Outline

- Introduction
- Radar System Design and Analysis
- ADAS Radar Systems
- Increasing the fidelity of RF and Antenna models
- Summary

Radar System Design: From Antenna to Algorithms

Radar System Design with Phased Array System Toolbox

5

Benefits of Flexible Modeling and Simulation Framework

- Rapidly model and simulate phased array systems in the MATLAB and Simulink environments
 - Interactive development with algorithms and tools specifically for phased array systems
 - Explore alternative system architectures and make system level trade-offs
 - Access to MATLAB's visualization and analysis tools
 - Capture system requirements in an executable model
 - Common "language" and interface across teams and projects
- Re-use and extend existing code and IP
 - Use existing C, MATLAB, and other code
 - Open API lets you include proprietary target models and environment models
- Process offline data in the same environment
 - Re-use the same algorithms and test benches

What's New in Radar Modeling?

Array orientation & Phase shift quantization

Range-time Intensity Doppler-time Intensity

R2016a

What's New in Targets, Platform and Environment?

End-to-End Wideband Radar System – Example Summary

Custom function with angle and frequency inputs

User-defined MATLAB function

Pulse Compression in the Wideband Example

- Pulse Compression
 - Maximizes peak SNR
 - Convolution in time domain with matched filter
 - Multiply in frequency domain with matched filter

- Stretch Processing
 - Apply dechirp processing to a linear FM pulse over a given range span.
 - Resulting sinusoid translates directly to range
 - Alternative for LFM pulses with large bandwidth signals

Wideband Simulink Models

End-to-End Wideband System Demo

Array

Visualize Radar and Target Trajectories

Demo

Modeling a Radar Task Scheduler

Demo

Radar Scheduler Using SimEvents

ADAS Radar

4

- Modeling an ADAS Radar System
- Long Range Radar Model Adaptive Cruise Control (ACC)
- Short Range Radar Model Blind Spot Detection

Background and Motivation

- Consumer demand and legislation drives safety improvements every model year
- Sensor accuracy requirements increase as "passive" safety evolves to "active" system control
- Momentum of autonomous vehicles accelerates ADAS technology
- Reasons for using radar in ADAS:
 - Range and velocity precision
 - Angular resolution and width of view
 - Conditions that impact camera vision do not impact radar view
- Short range radar characteristics
 - Wide bandwidth enables high range resolution at short ranges.
- Long-range radar characteristics
 - Range distance and beam width

Radar-based ADAS Applications

Short/Medium Range	Long Range
Blind Spot Detection	Automatic Cruise Control
Cross Traffic Detection	Collision Avoidance
Rear Collision Warning	
Emergency Braking	

Modeling ADAS Features in Simulink

Integrate <u>sensing</u> (radar, vision, etc...) and <u>control</u> algorithms

Designing Radar Systems with Simulink

- <u>Design</u> a radar component or system
 - Mix of models with different levels of fidelity
 - Multipath propagation
 - Multiple objects
 - Develop optimal detection algorithms

- Validate radar performance and examine what-if scenarios
- Simplify system level debug for anomalous data from road-test
- Evaluate the use of off-the-shelf components to reduce system cost
- Integrate the radar in a larger system and facilitate sensor integration

Long Range Radar Model - ACC

- FMCW radar model
 - Waveform generation
 - Waveform processing
 - Transmitter and receiver
- Environment model
 - Propagation channel
 - Obstacles
- Vehicle model
 - ACC speed control
 - Vehicle dynamics
- 3D visualization

Blind Spot Detection Model

- Built using Long Range Radar example as a starting point

- Lower transmit power for shorter distance
- Higher range resolution for distance accuracy

- Change orientation of the radar
- Modify positioning and velocity of the vehicles
- Update detection algorithm

Increasing the Fidelity of the RF and Antenna Models

Δ.

Antenna Toolbox

- Easy design
 - Library of parameterized antenna elements
 - Functionality for the design of linear and rectangular antenna arrays
 - No need for full CAD design
- Rapid simulation setup
 - Method of Moments field solver for port, field, and surface analysis
 - No need to be an EM expert
- Seamless integration
 - Model the antenna together with signal processing algorithms
 - Rapid iteration of different antenna scenarios for radar and communication systems design

Integrating an Antenna Array in a Radar System Model

• You can integrate your antenna into the radar model built in Phased Array System Toolbox

% Import antenna element in Phased Array
>> myantenna = dipole; Antenna element
>> myURA = phased.URA; Phased Array System Toolbox array

Antenna Array, Phased Array, and Radiation Pattern

- Phased Array System Toolbox arrays use pattern superposition
 - ULA, URA, UCA and conformal arrays use the same pattern for all elements
 - Heterogeneous arrays have different patterns for different elements
- Antenna Toolbox arrays perform full wave EM analysis
 - Isolated element vs embedded element vs full array

Isolated element

Embedded element

pattern(l, 10e9, ... 'ElementNumber',2);

Full array

pattern(1, 10e9);

Wideband Antenna Integration Example

Demo

Model-Based Design for Radar Systems

- Complete system model
- Requirements traceability
- System behavior exploration
- Cross team collaboration
- Deploy on desktop
- Generate code and HDL
- Integrate into larger systems
- Explore design tradeoffs
- Configuration management
- Automated regression testing
- Report generation
- V&V and security analysis for code
- Support for certification & standards

Summary

- MATLAB, Simulink, Phased Array System Toolbox, Antenna Toolbox and SimRF provide flexible platform for radar system design and simulation
 Large number of examples to get started with
- MathWorks products also enable design and implementation of radar systems across the workflow
- Thank you very much for you time today