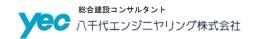


ドローン×ディープラーニングによるインフラ損傷検出自動化

ー ユースケースの捉え方とToolbox活用ー

八千代エンジニヤリング株式会社 技術創発研究所 AI解析研究室 安野貴人

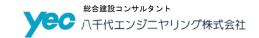
http://www.yachiyo-eng.co.jp/topics/post4.html

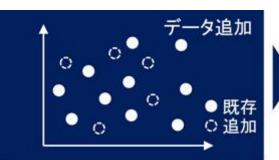


はじめに

技術の創発とMATLABの契機

技術創発研究所とは





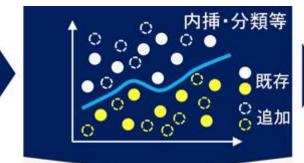
- ·既存DB活用技術
- ・センサー, ドローン技術
- ネットワーク技術
- データベース技術
- ・見える化技術

Data Collection

業務化

見える化

- ・交通・物流・施設空間の見える化
- ・災害発生/進行の見える化
- 作業/活動の見える化
- ・現地・現場作業の省力化



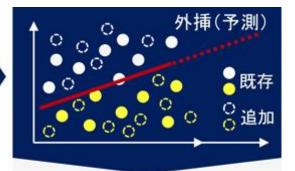
- ·静止画認識. 検出
- ·動画認識. 検出
- 転移学習
- •強化学習
- ・時系列データ検出

Recognition, Interpolation, Classification, Detection

業務化

自動化/生産性向上

- ・維持管理・点検業務へ適用
- ・河川水位・流量予測へ適用
- 防災・災害情報の自動収集
- ・暗黙知の形式知化(農業/水産業)



- ・物理モデル
- 経済モデル
- •人口分布予測
- ·施策影響予測
- ・都市の在り方

Extrapolation, Prediction

業務化

現場の将来予測

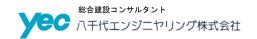
- 社会資本の将来枠組み決定
- ・新規事業予測へ適用
- ・意思決定優先度へ適用
- ・予測情報の提供サービス

RIIPS

技術創発研究所が描く"blue print" 🗡 🚾 កេត្តបាន ក្រុម ក្



デジタル化とりくみ例

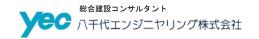


沖縄で「MaaS」実証、八千代エンジニヤリングが ブロックチェーンを活用

https://tech.nikkeibp.co.jp/atcl/nxt/event/18/00057/00025/

- 沖縄県で次世代の移動サービス「MaaS (Mobility as a Service)」実証が進んでいる。
- 総合建設コンサルタントの八千代エンジニヤリング(東京・台東)は、「ブロックチェーン」を使ったMaaSの仕組みを開発した。
- マイカー利用が多い地域での駐車場不足や渋滞の緩和を目的に、ブロックチェーン上の記録データを分析して効率的な利用を促す。
- 2019年1月に沖縄国際大学と連携し実証した。

特徴量把握とりくみ例

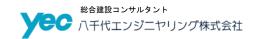


コンクリート表面の劣化サイズを定量化するAI 国の業務に適用

https://tech.nikkeibp.co.jp/atcl/nxt/column/18/00142/00415/?ST=nxt_techcareer

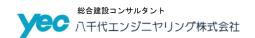
- 八千代エンジニヤリングは人工知能(AI)を構築して、ダム外壁のコンクリートの剥落を定量的に判定する手法を適用した。
- 従来は双眼鏡による目視で確認していたダム堤 体の劣化情報を、ドローン画像とAIで把握する。
- 構築した領域抽出器を、東北地方整備局の鳴子 ダムでの点検業務の精査に用いた。
- 深層学習(ディープラーニング)を用いて、点 在する損傷の位置と大きさを特定した。

MATLABの契機

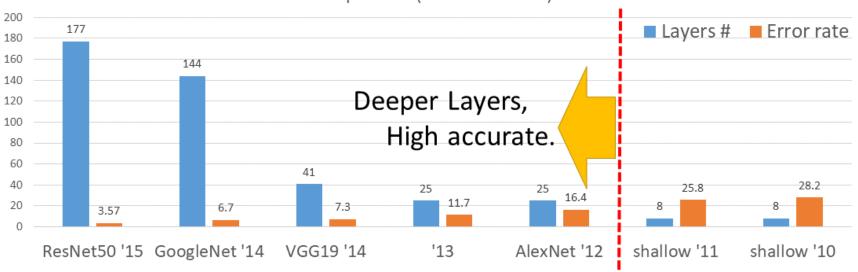


- きっかけは、ドローンで撮影したダム監視画像を用いて、AIを活 用した高精度かつ効率よい分析を行う(2018.5)
- 早期に、教師画像の作成から損傷の数と面積の推論まで行い、補 修面積の実寸評価に落とし込むことをめざした。
- 教師画像は、ワーカー5名を確保し、何を塗るか、教師画像の品 質基準を定めて、着手しようとしていた。
- イメージラベラーアプリは配布不可なので、ワーカーが比較的使 い慣れたPhotoshopで、ターゲットの損傷(ROI)を赤く塗った。
- **MathWorksエンジニアのサポートで、カラースライス処理し、** (ROI, background)の2クラスラベルのマスク画像に加工した。
- 学習方法の選択は、物体検出のbboxでは、損傷領域を的確につ かめないため、セマンティックセグメンテーションを採用した。
- ■像処理からディープラーニングまでの汎用ツールボックスを紹 介頂き、評価版で試行、継続導入し、本格計算を実行(2018.7)。

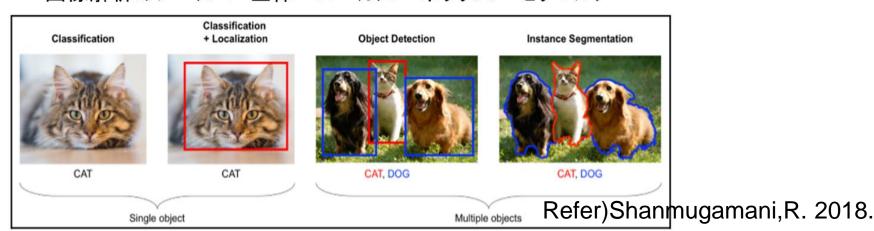
2012年、精度の躍進 画像解析のブレイクスルー



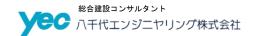
The Image Net dataset 14,197,122 images, 1,000 classes and competitions(ILSVRC2010-'15)

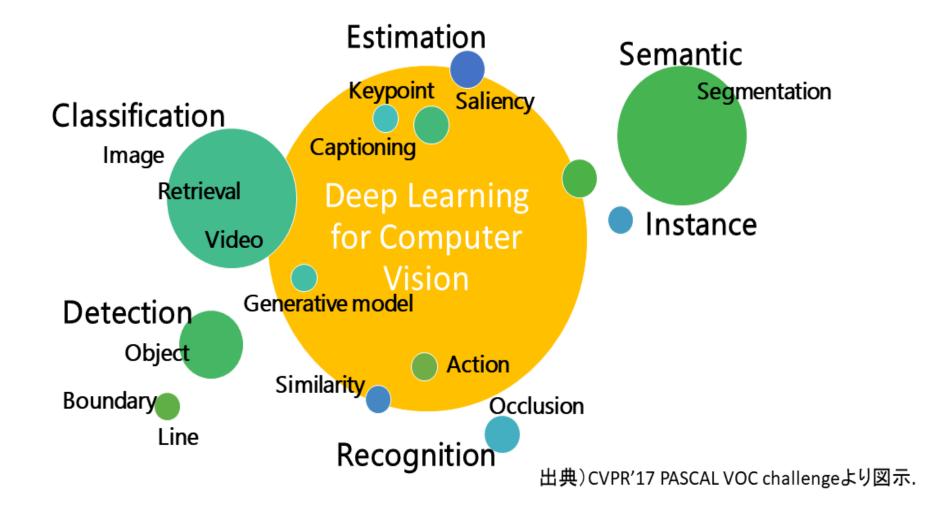


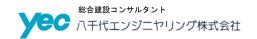
画像解析のレベル: 全体~ローカル~ボックス~セグメント



画像解析タスク セマンティックセグメンテーション





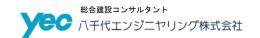


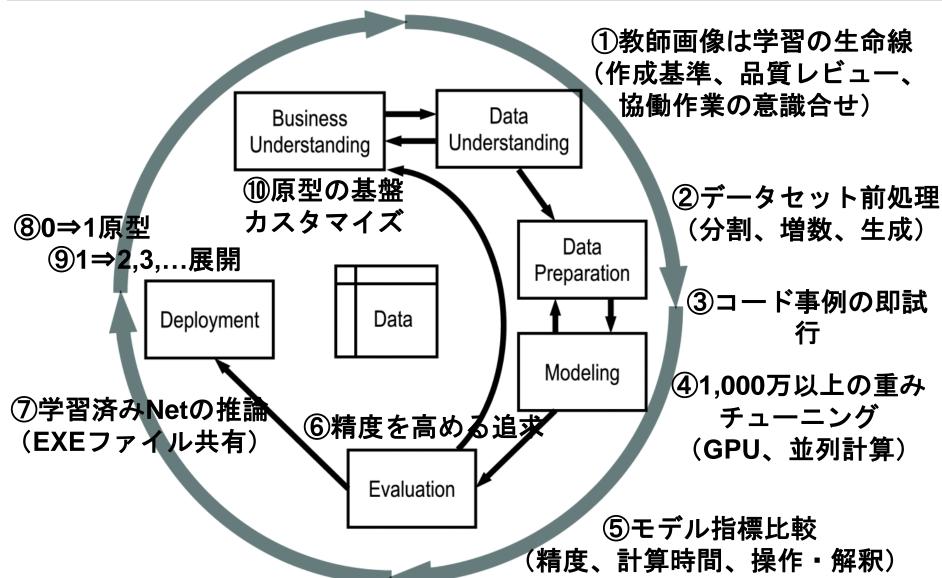
PoCの課題とアプローチ

画像のデータマイニング ユースケースの捉え方

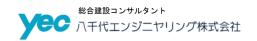
業種横断 "CRISP"

データマイニングプロセス





ユースケース(uc)の捉え方 たとえば・・・



定期監視

uc2■橋梁の目視画像 損傷の自動検出 点検の効率化

uc3■老朽化ダム ドローン撮影画像 損傷の自動検出

維持管理

uc1■河川景観評価 要素の自動検出 調査の省力化 **Machine Learning**

AIの活用場面

Deep Learning

災害初動

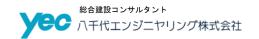
uc4•CCTV画像 地震被害の検知 初動対応の迅速化

交通調査

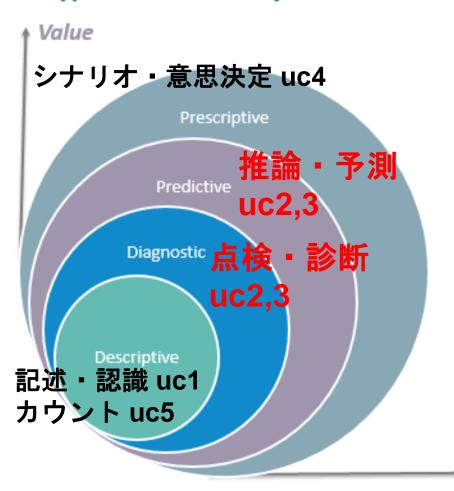
心理評価

uc5●車両・歩行者の認識 台数・人数カウント 調査の効率化

視点1:AIをつかう目的



4 types of Data Analytics



What is the data telling you?

Descriptive: What's happening in my business?

- Comprehensive, accurate and live data
- Effective visualisation

Diagnostic: Why is it happening?

- Ability to drill down to the root-cause
- · Ability to isolate all confounding information

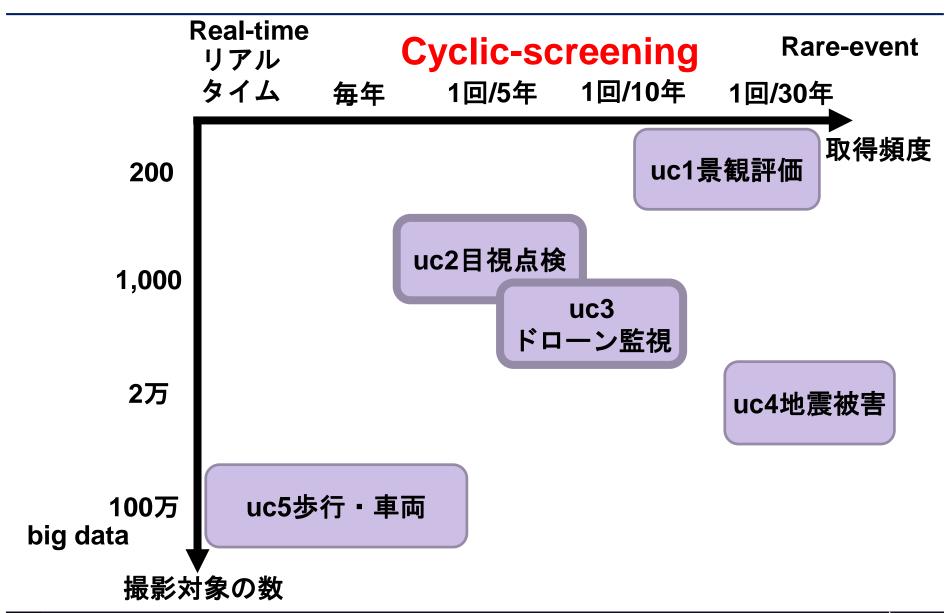
Predictive: What's likely to happen?

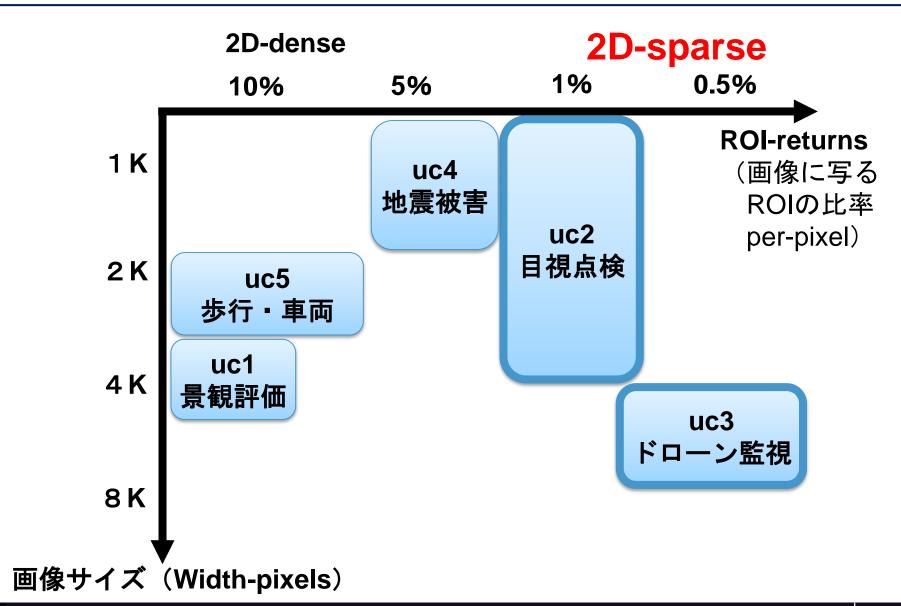
- Business strategies have remained fairly consistent over time
- Historical patterns being used to predict specific outcomes using algorithms
- Decisions are automated using algorithms and technology

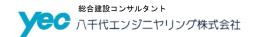
Prescriptive: What do I need to do?

- Recommended actions and strategies based on champion / challenger testing strategy outcomes
- Applying advanced analytical techniques to make specific recommendations

Complexity





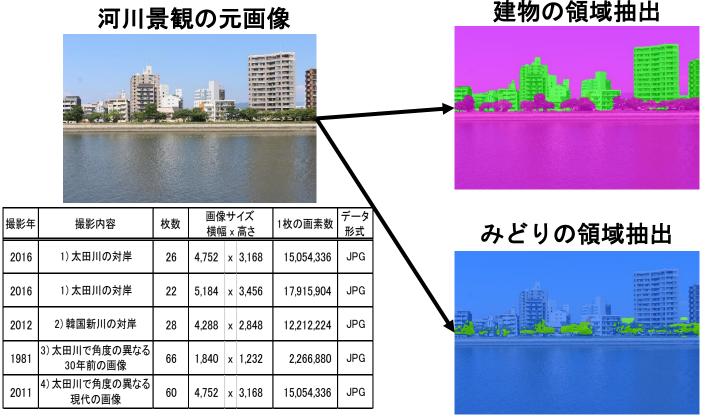


AI活用ユースケース

1. 景観要素の領域抽出



- ・河川景観の「心理評価」は、被験者の主観に依存し、その負担が大きい。
- 「物理評価」は,定義が明確で,客観的に把握でき,結果の信頼性も高い。
- ・物理指標の計算では、人手により一枚一枚の写真から要素を抽出していた。
- ・物理指標の情報抽出を自動化できれば、費用や労力の軽減が期待される。



出典) 安野・姜・西名・金子:「都市河川景観評価におけるDeepLearningの応用について検討その1 -景観構成要素の領域抽出手法の提案-」、日本建築学会、景観OS、2019.2.28投稿.

対象領域の取れ高: Class weights

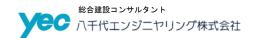


表 入力画像の対象領域ピクセルカウントとROI割合

対象領域	ピクセル カウント(30枚計)	ピクセル カウント(1枚単位)	領域の 割合
建物ROI	57,567,924	1,918,931	12.6%
緑ROI	45,319,234	1,510,641	9.9%
背景	353,719,562	11,790,652	77.5%
画像全体	456,606,720	15,220,224	100.0%

■コツ: "Class weights"

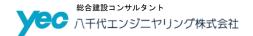
countEachLabel:各クラスをピクセル単位でカウント.

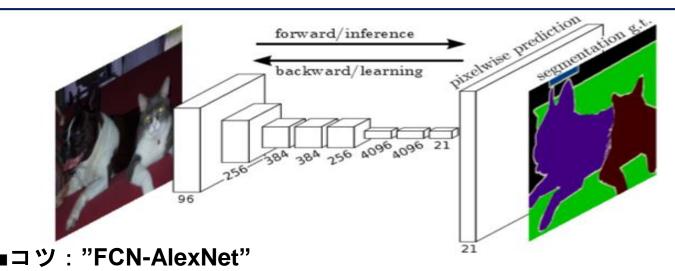
PixelCount:入力画像1枚あたりのクラスのカウント。

・ImagePixelCount:クラスを含む有効な入力画像の条件付きカウント.

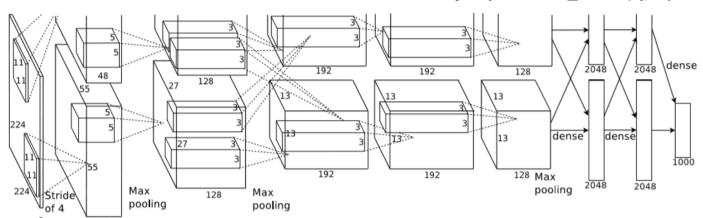
出典)安野・姜・西名・金子:「都市河川景観評価におけるDeepLearningの応用について検討その1 -景観構成要素の領域抽出手法の提案-」、日本建築学会、景観OS、2019.2.28投稿.

全層を畳み込む23層ネットワーク



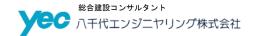


- ・'fc6', 'fc7'をConvolution2dLayerに置き換え.
- ・アドオンからMathWorks エンジニアの見本codeをDL即試行できる.

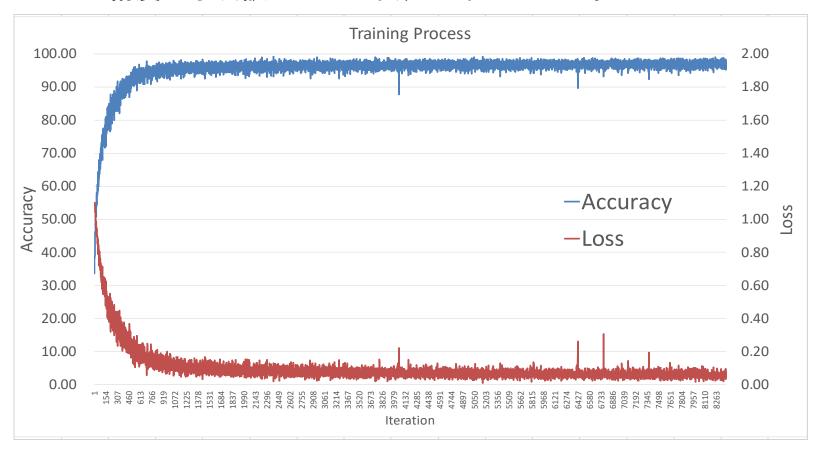


J. Long, E. et al.: Fully Convolutional Networks for Semantic Segmentation, CVPR, pp3431-3440, 2015.

重みパラメータ最適化 'net.mat'



- ●精度を最大に、予測誤差を最小にする最適探索の計算。
- ●8,475回、3時間14分の反復計算(GPU並列処理)
- ●精度・予測誤差ともに安定収束している。



出典) 安野・姜・西名・金子:「都市河川景観評価におけるDeepLearningの応用について検討その1 -景観構成要素の領域抽出手法の提案-」、日本建築学会、景観OS、2019.2.28投稿.

学習済みnetによる建物・緑の推論出力 yec ハチイヒエンシニヤリンクキホtゑ社

- ●教師画像30枚に含まれた特徴は、うまく予測出力できている。
- ●一方、教師に含まれない盲点の特徴は、追加の再学習が課題。

左上:同じ河川の対岸を向いた出力、右上:同じ河川の異なる角度

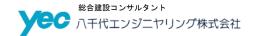
左下:異なる樹木、曇り空の出力、 右下:30年前、古い建物、冬季の出力

■コツ: "Pred = semanticseg(imTest, net)"

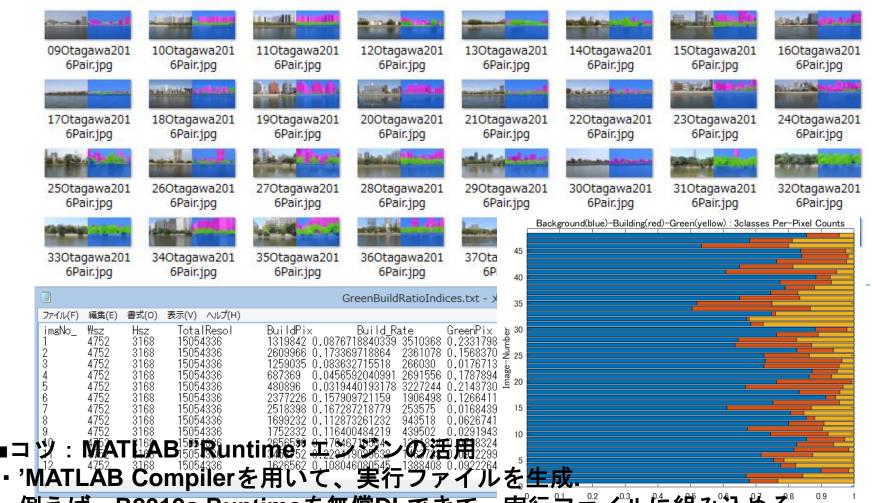
・学習を終えたAl 'net.mat'によるテスト画像'imTest'の推論.

出典) 安野・姜・西名・金子:「都市河川景観評価におけるDeepLearningの応用について検討その1 -景観構成要素の領域抽出手法の提案-」、日本建築学会、景観OS、2019.2.28投稿.

推論出力の実行ファイル共有

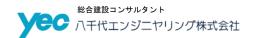


●同一河川の多地点で撮影した(学習に含まれない)テスト画像に適用 し、建物・緑の領域を自動抽出し、比率指標を心理評価に用いたい。



・例えば、R2019a Runtimeを無償DLできて、実行ファイルに組み込める。

Artificial Intelligence



AI活用ユースケース

2. 多数の橋梁点検

Machine Learning

・立地・諸元・履歴のデータからルールベースで、劣化要因と対策を推奨する

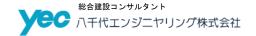
Image Processing, Computer Vision

・点検の現場写真の画像から、ある種類の損傷があることを自動で認識する

Deep Learning

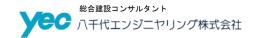
・ボックス・領域により損傷に照準を合わせ、個所数や面積の対策情報を得る

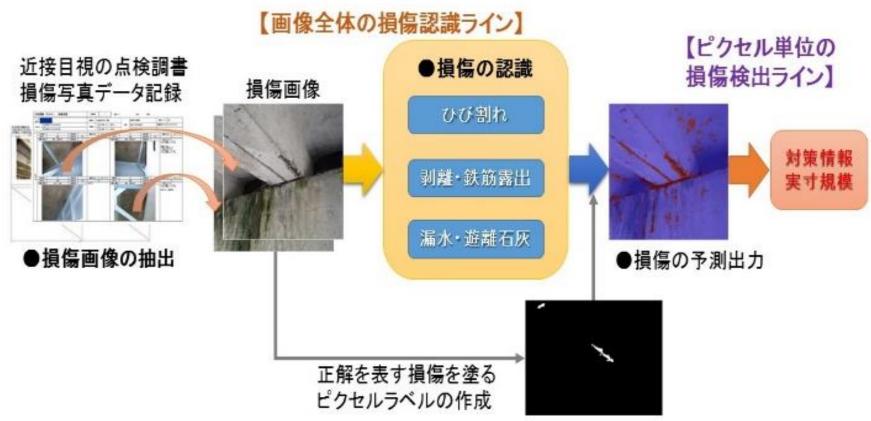
橋梁、5年に1回の目視点検、26項目 yee パチ代エンジニヤリング株式会社



大分類	点検項目
<u>コンクリート部材損傷N=6</u>	・ひびわれ ⑥ ・剥離・鉄筋露出 ⑦ ・漏水・遊離石灰 ⑧ 、・抜け落ち ⑨ ・床版ひびわれ ⑪ 、・うき ⑫
鋼部材の損傷N=5	・腐食①、 ・亀裂②・ゆるみ・脱落③・破断④・防食機能の劣化⑤
<u>共通の損傷N=10</u>	 ・補修・補強材の損傷 ・定着部の異常®、変色・劣化®、 ・漏水・滞水®、異常な音・振動② ・異常なたわみ②、・変形・欠損③、 ・土砂詰り④、沈下・移動・傾斜⑤、 ・洗堀⑥
<u>その他の損傷N=5</u>	・遊間の異常 ® ・路面の凹凸 ゆ 、舗装の異常 ゆ ・支承部機能障害 ⑥ 、その他 ⑰

点検調書の活用、鉄筋露出の抽出

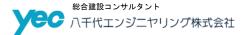




- ■コツ:アプリ"イメージラベラー"
- ・アプリを起動して、ペイント機能を使って、対象ROIを手早く塗り分け、 ピクセル単位でラベリングしたマスク画像(学習用)を即出力できる.

出典)中島・安野・永富・野田他:「目視点検の損傷画像による鉄筋露出セグメン テーションの転移学習」、人工知能学会、新潟大会、 2019.6.4.

208枚、取れ高1%、領域抽出器の構築 🚾 ハチイヒエンシニヤリンクキホt含社

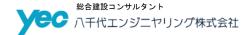


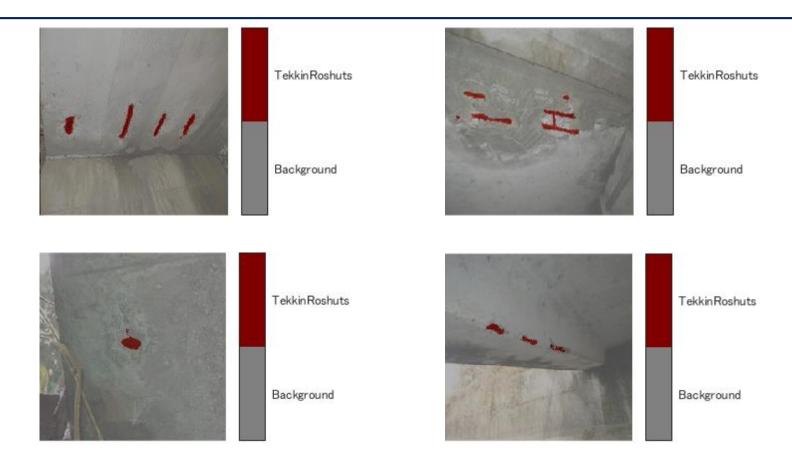
縦	横	1枚の ピクセル総数	最小画素 に対する 倍率	枚数
378	504	190,512	1.00	163
540	720	388,800	2.04	12
852	1,113	948,276	4.98	33

208枚の鉄筋露出が映る 損傷写真の例	損傷画像の ピクセル総数	1枚当たり 平均ピクセル数	1枚に占める 割合
背景(Background)	63,683,619	306,171	98.9%
検出対象の損傷(ROI)	725,251	3,487	1.1%
1枚の合計	64,408,870	309,658	100.0%

出典)中島・安野・永富・野田他:「目視点検の損傷画像による鉄筋露出セグメン テーションの転移学習」、人工知能学会、新潟大会、 2019.6.4.

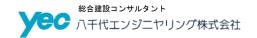
領域抽出器による鉄筋露出の推論出力 火き パチ代エンジニヤリング株式会社





- ■コツ: "RandomCropsExtraction"
- ・データの少なさを補強するため、指定の入力サイズ(例.224 x 224)で、 Augmenter (回転、反転等) をかけたパッチを生成できる (例.64倍).

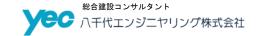
出典)中島・安野・永富・野田他:「目視点検の損傷画像による鉄筋露出セグメン テーションの転移学習」、人工知能学会、新潟大会、 2019.6.4.

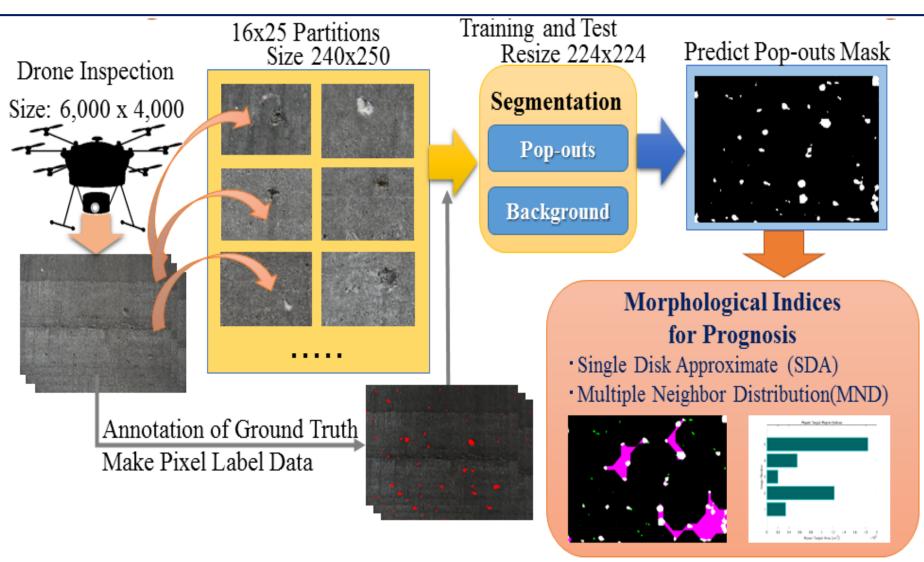


AI活用ユースケース

3. 構造物の定期監視

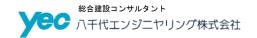
ダム提体監視、補修対策の実寸評価



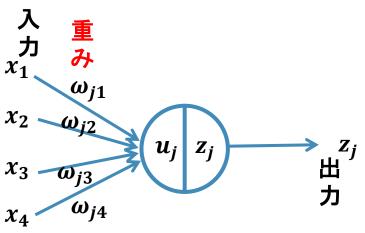


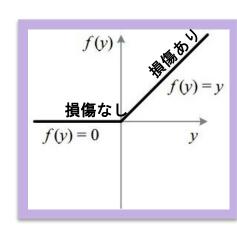
Refer)Yasuno T., Fujii J. et al.: Pop-outs Segmentation for Concrete Prognosis Indices using UAV Monitoring and Dense Dilated Convolutions, IWSHM, 2019 Sept.

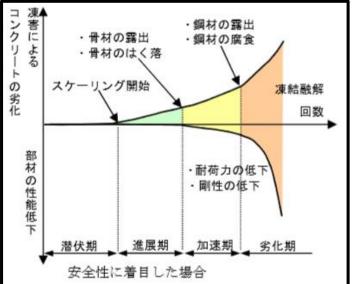
領域抽出器の構築



●骨材の露出か、背景かを検出するニューラルネットワーク







$$u_j = (\omega_{j1}x_1 + \omega_{j2}x_2 + \omega_{j3}x_3 + \omega_{j4}x_4)$$
 $z_j = f(u_j)$ f(): 活性化関数

・損傷が写っているか、背景画像かの事実に近づくように重みを学習させる

「凍害が疑われる構造物の調査・対策手引書(案)」 H28.1寒地土木研究所より

ポップアウト損傷領域の取れ高

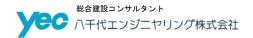
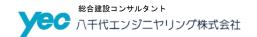


Table 1: Comparison of the per-pixel counts between the target pop-outs region and the background region.

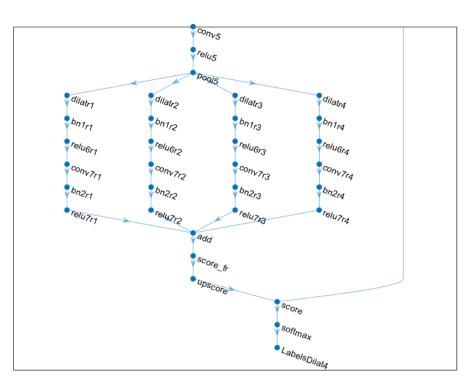
Example consisting of 40 damage drone inspection images	Total number of pixels per damage image	The number of pixels per image	Percentage per image
Background	954,339,801	23,858,495	99.4%
Pop-outs region of interest (ROI)	5,660,199	141,505	0.6%
Total per image	960,000,000	24,000,000	100.0%

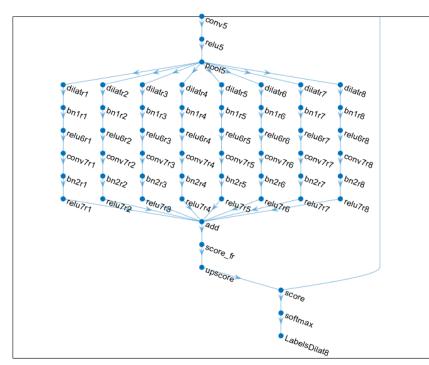
出典) Yasuno T., Amakata M. et al.: Sparse Damage Per-pixel Prognosis Indices via Semantic Segmentation, JSAI2019, International Session, Submission.

ディープネットワークの創意工夫



●FCN-AlexNetを拡張して、2D-sparseの課題を克服するため、 Dilated Convolution を導入したレイヤーグラフを構成した.

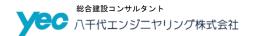




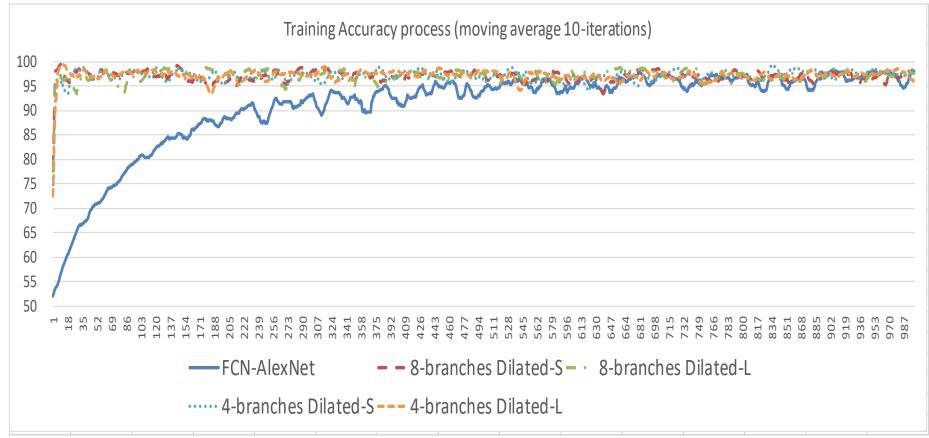
■コツ: "AnalyzeNetwork"

・起動して、深い複雑なレイヤーグラフを視覚化できて、畳み込み後のサイズ、チャネル等を確認し、エラー解消等フィードバックが円滑.

工夫したIgraphのパラメータ最適化



- ●疎な損傷の分布を、密に捉えるため、8ブランチを試みた。
- ●4,995回、 2時間38分の反復計算(GPU並列処理)。
- ●ベンチマークFCN-AlexNetよりも、早く高い精度で安定収束している。

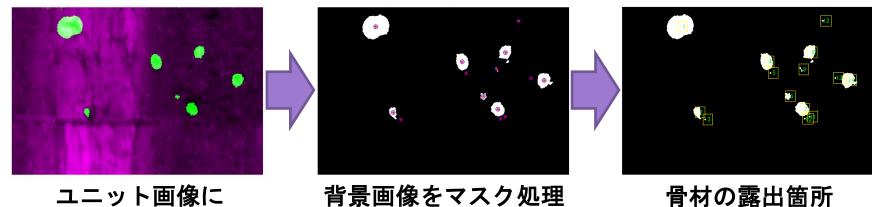


Refer) Yasuno T., Fujii J. et al.: Pop-outs Segmentation for Concrete Prognosis Indices using UAV Monitoring and Dense Dilated Convolutions, IWSHM, 2019 Sept.

領域抽出器による自動検出とカウント 🚾 パギ代エンジニヤリング株式会社

●骨材の露出の個数カウント、損傷領域の数値化

✓ ユニット画像から骨材の露出を予測出力し、個数を自動カウントする。



骨材露出がある領域の

中心点を捉える

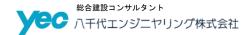
ユニット画像に 領域抽出器を適用 骨材の露出を予測出力

(緑:骨材の露出

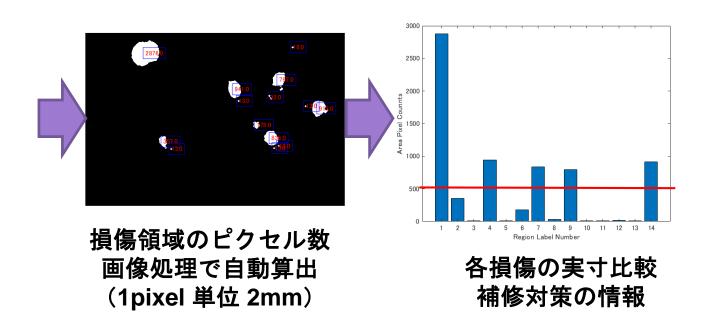
紫:背景)

骨材の露出箇所 のナンバリング 自動カウント

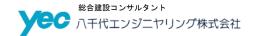
検出した損傷領域の面積を実寸換算



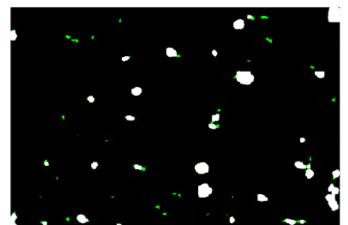
- ●骨材の露出箇所で、損傷領域の数値化
 - ✓ 各損傷領域のピクセル数を自動算出し、実寸単位で換算した面積指標を近似計算する。



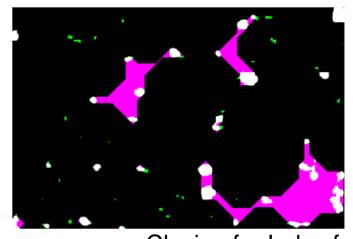
モーフォロジー処理: Open, Close



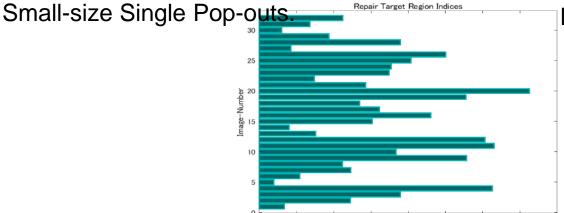
- ●あるサイズ未満の小さ過ぎる損傷領域を除外したい。"imopen"
- ●近隣に位置する損傷領域を一括補修する目安の面積指標を計算。"imclose"
- ●棒グラフで指標を視覚化し、補修の優先順位の比較設定をサポート。



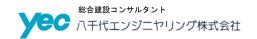
Opening Operations to Reduce



Closing for Index for Multiple Pop-outs Repair



Repair Target Bars for Multiple Neighbor Distributed Pop-outs



おわりに

更なる創発研鑚にむけて

プロトタイピングと頑健化

- 目視画像の有効活用、ドローン画像の全貌監視
- ドローン動画の分類、特徴取れ高の豊かなROIの切り出し
- **精度の生命線、教師画像の品質管理、盲点の再学習**
- セマンティックセグメンテーションのケース蓄積と技術研鑽
- ディープネットワークのカスタマイズ、ベイズ最適化
- 学習を終えたディープネットワークの実行ファイル共有と普及
- 目的と課題に即した俊敏なプロトタイピング、柔軟かつ頑健