MATLAB EXPO 2017

How to build an autonomous anything

Jim Tung MathWorks Fellow MathWorks

..........

.......

Autonomous Technology

Autonomous

Acting independently

Autonomous Technology

Provides the ability of a system to act independent of direct human control under unrehearsed conditions

Autonomous Technology – Balancing Responsibility

Degree of Autonomy

Cost of rig: \$1,000,000+ Repair cost: \$100,000

Cost of valve: \$200

Autonomous Service for Predictive Maintenance

Autonomous Service for Predictive Maintenance

Machine Learning or Deep Learning?

Machine Learning Approach

Deep Learning Approach

Feature Extraction & Classification

23

Output

R2017b Mega Release of Deep Learning Capabilities

Deep learning design is easy in MATLAB

Apps for Ground Truth Labeling, Pixel Labeling Pre-trained model importer Training Visualization

Parallel Computing Toolbox

7x faster than pyCaffe2x faster than TensorFlow

GPU Coder

14x faster than pyCaffe4x faster than TensorFlow1.6x faster than C++ Caffe

What are the best predictors?

Data-driven

What are the best predictors?

- Data-driven
- Model-driven

Autonomous Glucose Level Management

Glucose Monitor

Glucose Monitor

Glucose Monitor

Virtual Clinic Generating data through simulation

Virtual Clinic Scaling computations to simulate 50 million patients a day

Where will you get your data?

- Simulation
- Public repositories
- In the lab
- In the field
- Internet of Things (IoT)

Working with **Big** Data Just Got Easier

A MathWorks

How will you put it into production?

- Embedded Systems
- IT Systems
- Cloud
- Desktop Apps

Prozesskennzahl v1.5 @ Mondi Gronau GmbH 2014

Investments in Model-Based Design

Efficient code generation

R2017a

Floating-point HDL code generation

Investments in Model-Based Design

Usage of prohibited block

Detect and fix standards compliance

Connected Physical Assets in Operation

Automation through Digital Twins

Digital Twin: Composite of artifacts that characterize and predict behavior of a specific real asset.

"Digital Twin" isn't a new concept...

Digital Twin concept has been used for a long time, especially when there is a <u>small</u> number of <u>expensive</u> assets and when reliability is critical (e.g., spacecraft, aircraft engines). The infrastructure has been one-off.

Re-imagining the Digital Twin

Act

Digital Twin:

- models (dynamic, FEM, data-driven, etc.) and data
- for each asset (e.g., system, component, or system of systems)
- performance and conditions over the asset's history.
- <u>continuously</u> updated as the asset is operated.
- always represents a <u>faithful</u> representation of the <u>current state</u> of the asset.

MATLAB and Simulink for Digital Twins: Key Capabilities

MATLAB and Simulink for Digital Twins throughout the lifecycle

How to build an autonomous anything

Focus on Perception

- Look for autonomy in creative places
- Do more than manually possible

Use the Best Predictors

- Data-driven
- Model-driven

Get the Right Data

Go to Production

How to build an autonomous anything

Focus on Perception	Look for autonomy in creative placesDo more than manually possible
Use the Best Predictors	Data-drivenModel-driven
Get the Right Data	 Reduce to actionable data Take advantage of Big Data Use simulation to supplement available data
Go to Production	 Address the architecture Leverage Model-Based Design for embedded Automate integration with enterprise IT systems

What is *your* autonomous anything?