
Milano
25/06/2019

Presented by:

Andrea Palazzetti

Ride Dynamics

Sviluppo di un sistema di sospensioni semiattive
mediante Model-Based Design con architettura
AUTOSAR e conforme allo standard A-SPICE

Roma
26/06/2019

Marelli - Ride Dynamics

• Marelli – Ride Dynamics – Mechatronic team
➢Design and development of semi-active suspensions system

➢Responsible for the whole system

• Mechatronic’s team is based in Turin

• ECU Application Software development
➢Shock Absorber damping force control strategies and diagnosis

2

Smart Damping Control System

• SDC system consists of
➢4 shock absorbers with one proportional EV each

➢5 accelerometers

➢ECU for closed loop damping control

Key Takeaways

➢“State of the art”: AUTOSAR and A-SPICE development process

➢Short time to market

➢Focus on bidirectional traceability

➢One single development environment for all SW related processes

Software development: goals and challenges

• State of-the-art for embedded automotive application software

• Model-Based Design and automatic code generation

• AUTOSAR Software architecture

• Development process compliant to A-SPICE reference model

• Such a development process and SW architecture are required by main OEMs

• Constraint: Short time to market

AUTOSAR

AUTOSAR ECU SW architecture

Automotive SPICE process reference model

Focus on

Software

development

• Specify software requirements

• Structure software requirements

• Establish bidirectional traceability between

• software and system requirements

• software requirements and software architectural element

• software requirements and software units

• software detailed design and the unit test specification

• elements of the software architectural design and test cases

• software qualification test specification and software qualification test results

• Develop a detailed design for each software component

• Define interfaces of software elements

• Define interfaces of software units.

Subset of recommended A-SPICE base practices

Focus on

traceability

Simulink Requirements: requirements specification

Whole SW development tool set based on
MATLAB & Simulink R2018a

• Simulink – Stateflow: SW units design and simulation

• Simulink Check and Design Verifier : coding guidelines check- Simulink model analysis

• Embedded Coder - Support package for Autosar: SW Components’ AUTOSAR interfaces design and C-
code autogeneration

Whole SW development tool set based on
MATLAB & Simulink R2018a

• Simulink Test: Unit testing – MIL testing

• Simulink Coverage: for testing coverage metrics

Whole SW development tool set based on
MATLAB & Simulink R2018a

• Specify software requirements

• Structure software requirements

• Establish bidirectional traceability between

• software and system requirements

• software requirements and software architectural element

• software requirements and software units

• software detailed design and the unit test specification

• elements of the software architectural design and test cases

• software qualification test specification and software qualification test results

• Develop a detailed design for each software component

• Define interfaces of software elements

• Define interfaces of software units.

Subset of recommended A-SPICE base practices

Requirements’ structure: three levels

➢ Simulink Requirements is used for requirements specification and linking

➢ Several “Requirement sets” used for grouping requirements

➢ One requirement set for every SW Component

SW requirements specification

Requirements set: example

Requirement

specification

Additional information

➢ link to implementation Simulink model

➢ link to verification harness model

BIDIRECTIONAL LINKS

Bidirectional traceability: Simulink Requirements view

• Specify software requirements

• Structure software requirements

• Establish bidirectional traceability between

• software and system requirements

• software requirements and software architectural element

• software requirements and software units

• software detailed design and the unit test specification

• elements of the software architectural design and test cases

• software qualification test specification and software qualification test results

• Develop a detailed design for each software component

• Define interfaces of software elements

• Define interfaces of software units.

Subset of recommended A-SPICE base practices

AUTOSAR INTERFACES design : BOTTOM-UP APPROACH

Simulink environment

Adding and mapping an AUTOSAR PORT

mapping

Detailed design

Bidirectional linking to implemented requirement

Data Dictionary specifies: tuneable parameters, measurable variables, constants,

bus object …

Data dictionary

Example: measurable variable

Model Advisor: Model check before code generation

Modeling standards: MAAB

MAAB rules automatically checked

Automatic report

Simulink Test automatically generates

the HARNESS MODEL

Unit testing: Harness Model

Harness model is

linked to the SW unit

Creation of harness model

Input test

patterns

Assessment block:

expected result evaluation

Harness Model: example

Link to requirement under test

Simulink Test - Test Manager

Unit Testing status: example

Simulink Requirements:

overall view

Embedded Coder: code generation

Embedded Coder: code generation

Bidirectional link between SW

element and C-code

MIL testing

Testing of the whole application layer: level 1 requirements

SW-Cs composition
Plant model

MIL testing

➢ Function callers blocks are used for simulating AUTOSAR S/R and C/S ports

➢ It is not needed to configure models for MIL

➢ Same models used for code generation are able to run even in MIL environment

AUTOSAR’s interface

simulation

MIL testing example: fault injection

Achievements and Outlook

• ECU SW put in production in April 2019

• 18 months of development

• Technical, organizational and business results.

• The standardization of development environment and the “bottom up” approach has increased
the cross-competence inside the SW team

• No need of other tools for AUTOSAR architecture design as regards to application
SWCs

• One single data base for requirements, software models, code and testing results

• Cutting of time needed for documentation since it is automatically generated

Achievements and Outlook

• Integrated toolchain based on Simulink environment for SW development
made traceability easier to achieve

• Use of the tool’s standard features only, avoiding customization (scripts) made
the toolchain lean and easier to update

• Bottom – up approach made AUTOSAR SW components design quicker

Forward-looking plans

• Use of new and upcoming MathWorks tools as System Composer for

➢System design in accordance with A-SPICE requirements

THANK YOU
FOR YOUR
ATTENTION

