MATLAB EXPO 2019

Sviluppare controlli digitali per convertitori elettronici di potenza

Aldo Caraceto

Power Electronic Systems

Power Electronics Applications

Electric vehicles and charging stations

Renewable energy MATLAB EXPO 2019

Rail

Lighting

Power Converter Control Design Workflow Tasks

- Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode
- Determine power losses and the thermal behaviour of the converter
- Design control algorithm based on time/frequency domain specification
- Implement power electronic controls on an embedded processor

Challenges for Power Electronics Engineer

- Understanding the impact of the power source and load on the operation of the power converter
- Testing embedded software for a complete range of operating and fault conditions
- Designing and implementing digital controls using *only* SPICE simulator tools
- Catching errors late in a program during software-hardware integration testing
- Qualifying designs to meeting regulatory and industry standards for efficiency, power quality, and safety

Why Simulink for Power Electronics Control?

- Extensive library of sources and loads
 - PV arrays, batteries, motors
- Broad range of power electronics models
 - Average value, fast ideal switching, physics-based
- Advanced control design capabilities
 - Auto-tuning in time & frequency domains for single and multiple loops
- Generation of readable, compact and fast code from models
 - C for microprocessors, HDL for FPGAs

Our Project Today

DC/DC LED Developer's Kit

Fig 1: TMDSDCDCLEDKIT

MATLAB EXPO 2019

LED Head Lamp

Fig4: DC/DC LED Lighting Board Block diagram with F28035

Power Converter Control Design Workflow Tasks

- Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode
- Determine power losses and the thermal behaviour of the converter
- Design control algorithm based on time/frequency domain specification
- Implement power electronic controls on an embedded processor

Let's get to it!

MATLAB EXPO 2019

Power Converter Control Design Workflow Tasks

- Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode
- Determine power losses and the thermal behaviour of the converter
- Design control algorithm based on time/frequency domain specification
- Implement power electronic controls on an embedded processor

Simscape model for DC-DC Sepic Converter

Simscape model for DC-DC Sepic Converter

Simscape model for DC-DC Sepic Converter

Ready

72%

ode23t

Recap: Size Inductor, Capacitor and Understand the Behaviour in Continuous and Discontinuous mode.

What we did:

- Use simulation to design DC to DC converters
- Optimize component sizing using simulation driven analysis

Power Converter Control Design Workflow Tasks

- Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode
- Determine power losses and the thermal behaviour of the converter
- Design control algorithm based on time/frequency domain specification
- Implement power electronic controls on an embedded processor

DC-DC Sepic converter with Non-Linear Switching Dynamics

MATLAB EXPO 2019

Ready

ode23t

Comparison of N-Channel MOSFET Characteristics With Datasheet

MATLAB EXPO 2019

Comparison of N-Channel MOSFET Characteristics With Datasheet

MATLAB EXPO 2019

Ready

Recap: Determine Power Losses and Simulate Thermal Behaviour of the Converter.

Conduction loss

What we did

- Use semiconductor blocks from Simscape Electrical to model the nonlinear switching behavior of SEPIC converter
- Leverage the multi-domain simulation capability of Simscape in understanding the thermal dynamics

Recap: Determine Power Losses and Simulate Thermal Behaviour of the Converter.

Conduction loss

What we did

- Use semiconductor blocks from Simscape Electrical to model the nonlinear switching behavior of SEPIC converter
- Leverage the multi-domain simulation capability of Simscape in understanding the thermal dynamics

New: Convert SPICE models into Simscape components

- Incorporate manufacturer specific behavior into simulation
- Easily parameterize the model
- Combine existing electronic models with other domains (such as thermal), control algorithms, signal processing, all in a single environment

	testMosfetNetlist.txt 💥 🕂			testMosfetNetlist.txt × ipt015n10n5_I1.ssc × +
	. FUNC	<pre>Idiode(Usd,Tj,Iss) {exp(min(le</pre>		components (ExternalAccess=ol
	. FUNC	Idiod(Usd,Tj) {a*Idiode($X1 = test.s5_{100}f_var(a)$
			subcircuit2ssc	rs=rs,rp=rd,dc=dc,r
	. FUNC	Pr(Vss0,Vssp) {Vss0*Vss0/Rm+V	Buberreur cebbe	RG = elec.passive.instru
				LG = foundation.electric
	. FUNC	$J1(d,g,T,da,s,x) \{a*(s*(exp(min)))\}$		i_L.priority=priori
				RSA = elec.passive.inst:
	. FUNC	QCds(x) {Cds3*min(x,x1)+Cds0*ma		LS = foundation.electric
l	FUNC	OCdaly) (Cayltminly v3)+Cay3tm		i T priority-priori

Power Converter Control Design Workflow Tasks

- Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode
- Determine power losses and the thermal behaviour of the converter
- Design control algorithm based on time/frequency domain specification
- Implement power electronic controls on an embedded processor

Controller Parameters: P = 0 I = -1e+0

Plant Parameters: K = 3.4373, $T_1 = 0.04$

Controlling PID parameters

Controller Parameters		
	Tuned	Block
Р	0.27328	1
I	38.0456	1
D	n/a	n/a
N	n/a	n/a
Performance and Robi	istness	
	Tuned	Block
Rise time	0.00864 seconds	0.00342 seconds
Settling time	0.0382 seconds	0.0351 seconds
Overshoot	5.6 %	32.9 %
Peak	1.06	1.05
Gain margin	147 dB @ 2.68e+05 ra	361 dB @ 3.14e+05 r
Phase margin	60 deg @ 169 rad/s	45.7 deg @ 349 rad/s
Closed-loop stability	Stable	Stable

MATLAB EXPO 2019

Ontroller was re-tuned using the new plant "Plant1"

• •• s	epic_new_closedlo	pp_tune/MCU/Software * - Simulink		- 🗆 ×
File	Edit View Displa	/ Diagram Simulation Analysis Code Tools Help		
4		$\Rightarrow \land \blacksquare @ - \blacksquare - @ < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ - = = = = = = @ - = = @ - @ = = @ - = @ = = @ - = @ = = @ - = @ = = @ - = @ = = @ - = @ = = @ - = @ = = @ = = @ - = @ = = @ - = @ = @ = = @ = @ = = @ = = @ = = @ = = @ = = @ = @ = @ = = @ = @ = = @ = @ = = @ = @ = @ = = @ = = @ = @ = = @ = @ = = @ = = @ = = @ = = @ = = @ = @ = @ = = @ $	0.8 Normal • • • • • • • • • • • • • • • • • • •	
Sof	tware	Block Parameters: Discrete PID Controller	×	
۲	Sepic_new_clos		Sample time (-1 for inherited): -1	
Q		Oiscrete-time	Integrator and Filter methods:	
K 3	Vout1 Voltage I	 Compensator formula 		
≠	Vout1 Max Volt Scaling : 3.3 * 2	P + 1	$I \cdot T_s = \frac{1}{1}$	
A∃				
\sim		Controller parameters	State Attributes	
		Source: internal		
	Proportional (P): 0.29875551672997 Integral (I): 37.8468024852967 Automated tuning 1000000000000000000000000000000000000			double
				TBPRD1
	Select tuning method: Transfer Function Based (PID Tuner App) Tune			
		Enable zero-crossing detection		
			~	
01		<	> >	
h			OK Cancel Help Apply	
>>				

Ready

Recap: Design Control Algorithm Based on Time/Frequency Domain Specifications

What we did

- Identify plant model from input output simulation data
- Use auto tuning algorithms to tune the control gains

MATLAB EXPO 2019

MathWorks[®]

New: Autotune PID Controllers in Simulation or on Hardware

ref

- Use Closed-Loop PID Autotuner block to generate autotuning code and deploy to embedded software
- Estimation experiment is performed without opening the feedback loop
- Use to tune PID controller gains for a plant model in Simulink or for a physical plant

Power Converter Control Design Workflow Tasks

- Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode
- Determine power losses and the thermal behaviour of the converter
- Design control algorithm based on time/frequency domain specification
- Implement power electronic controls on an embedded processor

Fast Code Generation Using Embedded Coder Quick Start

SIMULINK MODEL

16 #include "Amplifier0.h" ummary Subsystem Report 18 /* Previous zero-crossings (trigger) states */ 19 PrevZCX rtPrevZCX; Code Interface Report 21 /* Real-time model */ raceability Repor 22 RT_MODEL rtM_; Static Code Metrics Report 23 RT_MODEL *const rtM = &rtM_; Code Replacements Report 25 /* Model step function */ void Amplifier0_custom(const int32_T arg_In, boolean_T arg_Trigger, int32_T enerated Code *arg_Out) 28 { Main file 29 /* Outputs for Triggered SubSystem: '<Root>/Amplifier' incorporates. ert_main.c * TriggerPort: '<<u>S1>/Trigger</u>' 31 Model files /* Inport: '<Root>/Trigger' */ Amplifier0.0 if (arg_Trigger && (rtPrevZCX.Amplifier_Trig_ZCE != POS_ZCSIG)) { 33 /* Outport: '<Root>/Out' incorporates: Amplifier0.h * Gain: '<u><51>/Gain</u>' * Inport: '<Root>/In' Shared files (2 <u>38</u> 39 *arg_Out = arg_In << 1;</pre> 40 41 rtPrevZCX.Amplifier_Trig_ZCE = arg_Trigger /* End of Inport: '<Root>/Trigger' */ 43

GENERATED CODE

Control Algorithm deployment to TI controller and Parameter Tuning using External Mode

DC_DC_LED_Implementation/PI_Controller_ISR - Simulink - 🗇 🗡							
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> isplay Diagram <u>S</u> imulation <u>A</u> nalysis <u>C</u> ode <u>T</u> ools <u>H</u> elp							
🔁 - 🗁 - 🚍 🗢 🔶 🚰 🎬 🎯 - 🚟 - 🏟 🔩 🕑) 🕪 🔳 🗹 🗸 İnf 🛛 Normal	- 🕢 - 🛗 -					
PI_Controller_ISR							
€ DC_DC_LED_Implementation ► Pa PI_Controller_ISR ►			•				
Add-On Exp	olorer		- 0 ×				
F. a f()		Contribute	Manage Add-Ons 📤				
		Search for add-ons	Q				
A	Embedded Coder S	🖥 Simulink Library Browser	×				
Installed	C2000 Processors	🗘 🐤 Enter search term 🚽 🔌 🔻 📴 🔻 😑 🥝					
	by MathWorks Embedded Coder Team	mbedded Coder Support Package for Texas Instruments C2000 Processors/C	2802x				
Vout1Ref	Generate code optimized for C2000 MC	> Deep Learning Toolbox	2802x/03x/05x/06x C2802x/03x/06x ^				
		SSP System Toolbox DSP System Toolbox HDL Support					
	Hardware Support	Embedded Coder Embedded Coder Support Package for Texas Instruments C2000 Processors	ADC AIO DI				
		C2802x	ADC AnalogIO Input				
	ew	C2803x C2805x	0				
Vout1ADC Data Type		C2806x					
	Editoria Noto: Popular Filo 2018	C280x C281x	AnalogIO Output COMP				
	Euror's Note. Popular Pile 2016	C2833x	C2802x C2802x				
	🛕 This support package is curren	F28004x	GPIOx > GPIOx				
	software for MATLAB R2016b	F2807x F2837xD	GPIO DI GPIO DO				
» 🖻	and workaround, see this Bug I	F2837xS	Digital Input Digital Output				
Peady	MATLAB R2017a and later version	Memory Operations • Optimization					
Neauy	•	C28x DMC					
		Scheduling	ecar epwm eCAP ePWM				
		Euzzy Logic Toolbox	C28x C28x				
Embedd	ded Coder [~] Support Package for Texas Instrumen	> HDL Coder	RD > >WD				
Matlab Expo 2019		HDL Verifier Image Acquisition Toolbox	I2C RCV				

Recap: Implement Power Electronics Control on an Embedded Processor

What we did:

- Verify the controller for various test cases
- Generate code from MATLAB and Simulink models optimized for embedded controllers

MATLAB EXPO 2019

Power Converter Control Design Workflow Tasks

- Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode
- Determine power losses and the thermal behaviour of the converter
- Design control algorithm based on time/frequency domain specification
- Implement power electronic controls on an embedded processor

How We Addressed The Challenges

- Understand the impact of the power source and load
- Testing for a complete range of operating and fault conditions
- Designing and implementing digital controls using *only* SPICE simulator tools
- Catching errors during software-hardware integration testing
- Compliance to industry standards
- Development Time

- Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode
- Determine non linear switching and the thermal behavior of the converter
- Design control algorithm based on time/frequency domain specification

 Implement power electronic controls on an embedded processor

Why Simulink for Power Electronics Control?

- Extensive library of sources and loads
 - PV arrays, batteries, motors
- Broad range of power electronics models
 - Average value, fast ideal switching, physics-based
- Advanced control design capabilities
 - Auto-tuning in time & frequency domains for single and multiple loops
- Generation of readable, compact and fast code from models
 - C for microprocessors, HDL for FPGAs

Customers routinely report 50% faster time to market

Murata Used Simulink to Model the EMS Controller and Power Electronics, Run simulations, and Generate Production Code

Challenge

Reduce time-to-market for the company's first energy management system product trial

Solution

Use Model-Based Design with Simulink to model the controller and power electronics, run simulations, and generate production code implemented on Piccolo[™] and Delfino[™] 32-bit microcontrollers made by TI

Results

- Control software development time reduced by more than 50%
- Defect-free code generated
- Project ramp-up time shortened

Murata flexible three-phase energy management system with lithium-ion battery.

Model-Based Design with Simulink enabled us to reduce time-to-market, which was a significant advantage for us. Because we were not expert programmers, modeling and simulating our control design and then generating quality C code from our models was essential to produce a working system as quickly as possible."

- Dr. Yue Ma, Murata Manufacturing Co., Ltd.

Maggiori Informazioni

- Partecipate alla masterclass
 "Sviluppo di un sistema di gestione delle batterie con Simulink»
- Visitate la pagina <u>mathworks.com/solutions/power-electronics-</u> <u>control</u>
- Scaricate <u>power electronics control design</u> <u>trial package</u> con il software necessario per effettuare desktop modeling, simulazione e control design

START TODAY. Download and install the trial software package.