The European Commission's science and knowledge service

Joint Research Centre

Directorate E Space, Security and Migration

Unit E.4 Safety and Security of Buildings

A MATLAB Toolbox for Experimental Modal Analysis of Structures

Daniel Tirelli daniel.tirelli@ec.europa.eu

> 29 Maggio 2018 Milano

ELSA Laboratory: The European Laboratory for Structural Assessment

Displacement Servo-Hydraulic Transducers Transducers Actuators Reference Frame $\frac{\text{Displacement}}{\text{Displacement}} d(t)$ Measured R(t)**Restoring Force** ...*dt* $Ma(t) + Cv(t) + R(t) = -MIa_{g}$ Accelerogram a_g Numerical Model

Force

The Pseudo Dynamic Method

Activity mainly for European Standards in Civil Engineering

MATLAB EXPO 2018

Storm on Volgograd Bridge (Russia 2010). Source: YouTube

What to understand from resonances?

Dangerous for structures

Practically

Commission

The "Genome" of the structural motion

Instrumentation

(Input)

(Output)

Accelerometer

European Commission

The toolbox is divided in two parts: in each of them MATLAB eases and shortens the signal processing

After the acquisition extracts the experimental modal parameters displaying results in different forms

Acquisition Methods

Commission

Tenths or hundreds of coherence curves to check

Coherence curves

Control of the measurements

A first "Time Reduction" converting number of curves in few histograms

Correct measurement

Represented by histogram of the coherence

with a

positive exponential fitting

After Noise filtering

Spatial control of the measurements

A Typical Example

Hammer tests on the first composite bridge of a motorway in Europe (Asturia -Spain)

Position to be

controlled !

200

150 등 전 100

50 ·

Use of Macro for a fast 3D design of the structures

Examples:

Bridge element in ELSA (*Prometeo project*)

Deck designed in grey color :

beam([-28 1385],[-126 126],[112 150],nf, [.6 .6 .6]);

Design of a Building in ELSA (Duarem project)

100

Interpolations of irregular mesh of measurement positions

Color grid in correspondence with the vibration amplitude levels

1- Create a regular cartesian mesh:

400

200

[xi,yi] = meshgrid(mi1:step1:ma1,mi2:step2:ma2)

600

Produce an iso-surface with: ci = griddata(Xcap1, Ycap2, Vcou, xi, yi);

800

1200

1000

Example of structure to illustrate the process of modal parameters extraction: a smart composite container prototype

	global mechanical properties of the container or one of its components.
0.1 0 2 0.3 0.4 time (sec)	
Signals in time dom	nain
3 impacts at each posi 25 positions for each pa 5 panels (each containe 3 transducers (Force+ 2 a Total: minimum time sig	tion 3 anel x 25 er) x 5 Acc) x 3 gnals = 1125

Allows to measure the

MATLAB EXPO 2018

Optimisation to obtain the final modal parameters

For each window dispersion Δf_i : 1 Frequency Matrix Mf_i

Which is the best clustering?

Calculate for each Δf_i , a Statistic S, and a Physical parameters P: S=Mean Std. Deviation for all columns (modes) P= Stability of the cluster (modes) when Δf_i increases.

Solution in the set of frequency matrix

= Max(P/S)

Solution of the modal parameters extraction

door side

Other Example: Duarem Frame in ELSA

European Commission

17

Spline interpolation for a better shape interpretation

MATLAB, step:7

[*xi*,*zi*] =*ndgrid*([...],... *yi* = *interpn*(*X*',*Z*',*Y*',*xi*',*zi*', '*spline*');

Example of a mode shapes of one of the vertical panel

Results recorded in video format without interpolation

MATLAB EXPO 2018

Results recorded in video format with interpolation (MATLAB, step:8)

Use and Interpretation of the Results: examples

Stiffness comparaison: Left panel stiffer than the right panel fl > fr

Left Panel fl~77,2 Hz

Comparison with theory of thin plates: in agreement with the theory

Theory of thin plates $f_{m,n} = \frac{c}{2\pi} \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$

	Canol Octomer 1	
20		
50)-		
-93+ N	a=236	
ο	b=219	
don nego	ய் க ல்	

Mode ratio	Freq.ratio Exp.	Freq.ratio Theo.
Y2/Z2	1.066	1 077
Y3/Z3	1.08	1.0//

The methodology allows the experimental modal analysis based only on measurements processing, with structured automated steps.

Automatisation of:

- Near Real-time Signal Processing during the tests for measurements control.
- Possibility to adopt **Fast Hammer Testing** method (faster method)
- **Spatial control** of the measurement to immediately detect the errors locations.
- **Powerful Interpolation** to control and for a great help in the interpretation of the results.
- **3D Visual animated** representation of the results.

Thank you

Mar. 200111

/ //15

NN S

daniel.tirelli@ec.europa.eu

B 188906600/0855555566

BASSSSSSSSS

UN