Development of Ride Comfort Model for 4x2 Tractor Trailer using MATLAB Simulink.

SARNAB DEBNATH
RAHUL CHOUDHARY

Contents

- Ride Comfort Evaluation- ISO 2631
- Whole Body Vibration
- Parameters Affecting Vibrations in Vehicle
- Vehicle Details- 4x2 TT
- Mathematical Modeling of 4x2 Tractor
- Input Parameters
- Parameter Estimation & Look-up Tables for Dynamic Input
- Mathematical Modeling of Differential Equations in Simulink
- Time Domain Output and Visualization
- Post Processing and FFT Analysis using MATLAB Script
- FFT Analysis on A Class and Cement Road
- RCI Analysis
- Conclusion and Future Scope

Ride Comfort Evaluation- ISO 2631

This defines methods for the measurement of periodic, random and transient whole body vibration.

- Frequency range:
- -0.5 Hz to 80 Hz for health, comfort and perception
- -0.1 Hz to 0.5Hz for motion sickness
- Bi-centric Axes: ISO 2631 is applicable to motions transmitted to human body through supporting surfaces: the feet of standing person, the buttocks, back and feet of seated person and supporting area of recumbent person.

Measured Vibration (m/s²)	Level of Comfort
Less than 0.315	Not Uncomfortable
0.315 to 0.63	A Little Comfortable
0.5 to 1	Fairly Uncomfortable
0.8 to 1.6	Uncomfortable
1.25 to 2.5	Very Uncomfortable
Greater than 2	Extremely Uncomfortable

Whole Body Vibration

Frequency [Hz]	Effect	
1-2	Dyspnoea (longitudinal vibration)	
2	Head resonance for horizontal vibration	
1-3	Max sensitiveness for respiratory apparatus	
2-3	Resonance of shoulder – head	
2-6	Resonance of the whole seated body	
3-4	Abdominal problems	
4-6	Resonance of thorax and abdomen	
4-10	Progressive decrease of visual acuity	
4-10	Changing in voice	
6-10	Changing in arterial pressure, cardiac	
	frequency and oxygen consumption	
10-12	Sleepiness	
13-15	Resonance of pharynx	
13-20	Head resonance and augment of muscular tone	
20-30	Max resonance of whole body with decrease	
	of visual acuity	
30-40	Vascular problems	
30-90	Resonance of ocular globes	
40-600	Resonance of skull	
100-200	Resonance of jaw	

Parameters Affecting Vibrations in Vehicle

Vehicle Details-4x2TT

Inputs

SYMBOL	NAME	Units
ms	Sprung Mass	kg
mf	FA Unsprung Mass	kg
mr	RA Unsprung Mass	kg
mc	Cabin Mass	kg
L1	Distance of CG of Sprung mass from FA	m
L2	Distance of CG of Sprung mass from RA	m
Lc1	Distance of Cabin CG from Front cabin mounting	m
Lc2	Distance of Cabin CG from Rear cabin mounting	m
Lcr	Distance of Rear Cabin Mount from Sprung mass CG	m
ly	Moment of Inertia of Sprung Mass	kg-m^2
Ic	Moment of Inertia of Cabin	kg-m^2
kf	Front Spring Stiffness	N/m
kr	Rear Spring Stiffness	N/m
ktf	Front Tyre Radial Stiffness	N/m
ktr	Rear Tyre Radial Stiffness	N/m
kc1	Front Cabin Mount Stiffness	N/m
kc2	Rear Cabin Mount Stiffness	N/m
cf	Front Damping	N-s/m
cr	Rear Damping	N-s/m
ctf	Front Tyre Damping	N-s/m
ctr	Rear Tyre Damping	N-s/m
cc1	Front Cabin Mount Damping	N-s/m
cc2	Rear Cabin Mount Damping	N-s/m
xrf	FA Excitation	m or m/s^2
xrr	RA Excitation	m or m/s^2

Outputs

Symbol	Name	Units
Z	Sprung Mass Bounce	m
Ë	Sprung Mass Bounce Acceleration	m/s^2
θ	Sprung Mass Pitch rad/ deg	
$\ddot{ heta}$	Sprung Mass Pitch Acceleration	m/s^2
zc	Cabin Bounce	m
ŻС	Cabin Bounce Acceleration m/s^2	
α	Cabin Pitch	rad/ deg
ά	Cabin Pitch Acceleration	m/s^2
f	Sprung Mass Bounce Frequency	Hz
fc	Cabin Bounce Frequency	Hz

Mathematical Modelling of 4x2 Tractor

Input Parameters

Input conditions for Cement Road

Sensor Mtg. Location	No. of Sensors
Front Axle	2 (LH+RH)
Rear Axle	2 (LH+RH)
Chassis- Above Front Suspension	2 (LH+RH)
Chassis- Above Rear Suspension	2 (LH+RH)
Fifth Wheel Coupling	1
Cabin Floor	1 (Below Driver Seat)
Driver Seat	2 (Driver+ Co Driver)

Road Input from A Class Road & 5th Wheel Coupling

Parameter Estimation & Look-up Tables for Dynamic Input

Damper properties of Main Suspension

Parameter Estimation Tool

Mathematical Modeling of Differential Equations in Simulink

Overview of Mathematical Model

Mathematical Model of Cabin

Mathematical Model of Sprung Mass

Time Domain Output

Time Domain Output Visulaization

Following Result shows close trend being followed by Simulation and actual result

Post Processing and FFT Analysis using MATLAB Script


```
Editor - C:\Users\Abhishek\Downloads\compare_peaks.m
Editor - C:\Users\Abhishek\Downloads\compare_peaks.m
                                                                                               compare_peaks.m × +
   compare peaks.m × +
                                                                                            This file can be opened as a Live Script. For more information, see Creating Live Scripts.
This file can be opened as a Live Script. For more information, see Creating Live Scripts.
                                                                                                    plot(t,S)
       %% Compute FFT of the Ride and Handling data
                                                                                            19 -
                                                                                                    title('Seat Vibration Data (exp and sim)')
                                                                                            20 -
                                                                                                    xlabel('Time (sec)')
3 -
           data = readmatrix('6046 TT Class A 150-250s.xlsx');
                                                                                                    ylabel('Signal(t)')
       %data = readmatrix('6046 TT Cement 150-250s.xlsx');
                                                                                            22 -
                                                                                                    legend('Experimental','Simulated')
                               % Sampling period
       T = 0.001;
                                                                                            23
       Fs = 1/T:
                               % Sampling frequency
                                                                                            24
                                                                                                    %% Compute the Fourier transform of the signal.
                               % Time span
       Tspan = 100;
                                                                                            25 -
                                                                                                    Y = fft(X);
       L = Tspan/T + 1;
                               % Length of signal
                                                                                            26 -
                                                                                                    P2 = abs(Y/L);
9
                                                                                                    P1 = P2(1:L/2+1);
       t = data(:,1);
                                % Time vector
10 -
                                                                                            28 -
                                                                                                    P1(2:end-1) = 2*P1(2:end-1);
11 -
       X = data(:,5);
                                % Experimental data
                                                                                            29
       %S = data(:,10);
                                % Simulated data for A Class
12
                                                                                            30 -
                                                                                                    Y = fft(S);
       S = data(:,8);
                               % Simulated data for Cement
13 -
                                                                                                    02 = abs(Y/L);
       %% Plot the signal
14
                                                                                            32 -
                                                                                                    01 = 02(1:L/2+1);
       figure(1)
15 -
                                                                                            33 -
                                                                                                    01(2:end-1) = 2*01(2:end-1);
16 -
       plot(t,X)
                                                                                            34
       hold on
17 -
                                                                                            35
                                                                                                    %% Plot the spectrum
18 -
       plot(t,S)
                                                                                                    f = Fs*(0:(L/2))'/L;
19 -
       title('Seat Vibration Data (exp and sim)')
                                                                                            37 -
                                                                                                    N = 25*round(2*length(f)/Fs);
20 -
       xlabel('Time (sec)')
                                                                                            38 -
                                                                                                    figure (2)
21 -
       ylabel('Signal(t)')
                                                                                            39 -
                                                                                                    plot(f(1:N+1),P1(1:N+1))
22 -
       legend('Experimental','Simulated')
                                                                                            40 -
                                                                                                    hold on
23
                                                                                            41 -
                                                                                                    plot(f(1:N+1),O1(1:N+1))
24
       %% Compute the Fourier transform of the signal.
                                                                                            42 -
                                                                                                    title('Single-Sided Spectrum of X(t)')
       Y = fft(X);
25 -
                                                                                            43 -
                                                                                                    xlabel('f (Hz)')
       P2 = abs(Y/L);
26 -
                                                                                            44 -
                                                                                                    ylabel('|Signal(f)|')
       P1 = P2(1:L/2+1);
                                                                                                   legend('Experimental', 'Simulated')
       P1(2:end-1) = 2*P1(2:end-1);
```


FFT Analysis- A Class Road

FFT Analysis- Cement Road

RCI Analysis

Conclusion & Future Scope

The project features Ride Comfort Establishment of Tractor Semi-Trailer Vehicle in Virtual Environment using MATLAB Simulink R2019b. The following conclusions can be obtained:

- · Time Domain Simulation Showcases the model following the Actual Simulation with close proximity
- Frequency domain shows the simulation to follow the actual result between 1-5Hz.

Further Scope

- · Engine Level vibration as input.
- Multi Axle Input
- Full Car Model Development for Handling Analysis

