BPO

Reinforcement Learning Workflows for Al

Naga Pemmaraju
Application Engineering

<) MathWorks

Key Takeaways

= What is reinforcement learning and why should | care about it?
- How do | set up and solve a reinforcement learning problem?

« What are some common challenges?

[LAB BEXIPO &\ MathWorks

Why Should You Care About Reinforcement Learning?

Hip joint

Knee joint

Ankle joint

[LAB BXIPO &\ MathWorks

One Approach Could Be...

--
* *

.
.

Measurements Motor torques

<

4@\ MathWorks

Any Alternatives?

Measurements

>

Black Box
Controller

Motor torques

4@\ MathWorks

Applications of Reinforcement Learning

@ AutoVrtiEny (64-bit, PCD3D_SMS) - O X

R o

o
e
T i
oo = __ﬁ /
[_/I—/i) e —

_f-"ff

—'—"'_'-'f'_/_'_'-_'_
S
=
——

0

QSupplyr

| (F.1,— Tank
Reservoir —ﬁ"_)

C;)Dernand

What iIs reinforcement learning?

Type of machine learning that trains an ‘agent’ through trial & error
Interactions with an environment

LAB BXIPO &\ MathWorks

Reinforcement Learning vs Machine Learning vs Deep Learning

{ Machine Learning }

Unsuper_vised Supervised Learning Relnforcgment
Learning Learning

[No Labeled Data] [Labeled Data] [Interaction Data]

CEEe W, G

PO

4\ MathWorks 8

Reinforcement Learning vs Machine Learning vs Deep Learning

{ Machine Learning }

Unsuper_vised Supervised Learning Remforc&_ement
Learning Learning

[No Labeled Data] [Labeled Data] [Interaction Data]

O O

o= 0

&\ MathWorks 9

N

Reinforcement Learning vs Machine Learning vs Deep Learning

[Machine Learning J

Unsupervised Reinforcement
Learning
[Interaction Data]

Supervised Learning

Learning [Labeled Data]

[No Labeled Data]

4\ MathWorks

10

Reinforcement Learning vs Machine Learning vs Deep Learning

[Machine Learning J

Unsupervised . . Reinforcement

Learning
[No Labeled Data]

Supervised Learning

[Labeled Data] Learning

[Interaction Data]

4@\ MathWorks 11

Reinforcement Learning vs Machine Learning vs Deep Learning

[Machine Learning J

Unsuper_vised Supervised Learning Relnforcgment
Learning Learning

[No Labeled Data] [Labeled Data] [Interaction Data]

[Deep Learning J

What about deep learning?

Complex reinforcement learning problems typically need deep neural networks
[Deep Reinforcement Learning]

\B EXPO 4@\ MathWorks

12

How does reinforcement learning training work?

Analogies with pet training

OBSERVATIONS ACTIONS
o

Policy update

Reinforcement
—> Learning

\ Algoithm J

REWARD

Here is
your treat!

ENVIRONMENT

4\ MathWorks

Reinforcement Learning Concepts
Training a self-driving car

/ AGENT

OBSERVATIONS
o

Policy update

Reinforcement
—> Learning

\ Algorithm
T

~

J

REWARD

ENVIRONMENT

ACTIONS

Vehicle’s computer...

(agent)

is reading sensor measurements from LIDAR, cameras,...
(observations)

that represent road conditions, vehicle position,...
(environment)

and generates steering, braking, throttle commands,...
(action)

based on an internal state-to-action mapping...
(policy)

that tries to optimize, e.g., lap time & fuel efficiency...
(reward).

The policy is updated through repeated trial-and-error by a
reinforcement learning algorithm

\B EXIPO 4@\ MathWorks 14

Reinforcement Learning Concepts

Training a self-driving car

After training, only trained

policy Is needed

POLICY

OBSERVATIONS ACTIONS

ENVIRONMENT

Vehicle’s computer uses the final state-to-action
mapping... (policy)

to generate steering, braking, throttle commands,...

(action)

based on sensor readings from LIDAR, cameras,...

(observations)

that represent road conditions, vehicle position,...

(environment).

By definition, this trained policy is
optimizing lap time & fuel efficiency

B BDIPPO 4@\ MathWorks

15

Reinforcement Learning vs Controls

Control system Reinforcement learning system
(AGENT \
'l:‘/-\ ERROR CONTROLLER oLANT R OBSERVATIONS Policy | ACTION
REFERENCE\J MANIPULATED T Policy update
- 1 VARIABLE Reinforct_ament
k Algothm)

MEASUREMENT

REWARD

Adaptation mechanism

Manipulated variable

ENVIRONMENT

Error/Cost function Reward
Action
Measurement Observation
Plant

Controller

Policy

RL Algorithm

Environment

Reinforcement learning has parallels to control system design

=

4\ MathWorks

16

Policy Representation and Deep Learning

Representation options
= Look-up table

= Polynomials / \

sl
4 ‘ | « « «

Observations > 3 l_’ l > Next action
2EME !
L == =A

N1 25 a5

Look-up tables do not scale well

[LAB BEXIPO &\ MathWorks 17

Policy Representation and Deep Learning

Representation options
= Look-up table
= Polynomials

« (Deep) neural networks

Observations >

(camera frame, sensors, ...)

/ Deep neural network policﬁ

\ /

> Next action

Neural networks allow representation of complex policies

[LAB EXIPO

&\ MathWorks

18

How do | set up and solve
a reinforcement learning problem?

AB BXIPO &\ MathWorks 19

Reinforcement Learning Workflow

- Simulation models or real hardware - Deep network? Table? Polynomial?

= Virtual models are safer and cheaper . Select training algorithm

= Tune hyperparameters
= Trained policy is a standalone

; s .’?., function \

— A — X — :

‘ +) 33,,,{—»“ :-:

= g ¢ sEEw
Environment Reward Policy Agent Training Deployment

representation \

= Large number of simulations needed
= Numerical value that evaluates goodness of policy _ o
_ _ - Parallel & GPU computing can speed up training
- Reward shaping can be challenging . _
= Training could still take hours or days

| AB BXIPO &\ MathWorks 20

Reinforcement Learning Workflow

ﬁ:f”;ii 1§f ‘eee
— — 3 — - .

S ‘ 6 @O + o*9® n+”“ : '!' :

Environment Reward Policy Training Deployment

representation

\B EXIPO 4@\ MathWorks 21

Reinforcement Learning Toolbox
Introduced in R2019

= Built-in and custom reinforcement learning algorithms

4\ MathWorks® eroduess sl

s A = Suppon Community Events
Reinforcement Leamning Toolbox wewersaser -

= Environment modeling in MATLAB and Simulink
— Existing scripts and models can be reused

Reinforcement Learning Toolbox

Design and train policies using reinforcement learning

= Deep Learning Toolbox support for representing policies

Reinforcement Leaming Toolbox™ provides functions and blocks for training policies
i fi t learning algorithm: luding DQN, A2C, and DDPG. You can
nd d king for

= Training acceleration with Parallel Computing Toolbox and
MATLAB Parallel Server

¢ lets you train policies by enabling them
y MATLAB Is. You

- - - - Through the ONNX™ model format, existing policies can be imported from deep
= Deployment of trained policies with GPU Coder and B e o O O Sl
Toolbox™). You can generate optimized C, C++, and CUDA code to deploy trained

policies on microcontrollers and GPUs

M /A I L A B C O d e r The toolbox includes reference examples for using reinforcement leaming to design
for robotics and driving

« Reference examples for getting started

, XXPO 4\ MathWorks 22

Example: Walking Robot

®- %-

Environment Reward

Control objective: Walk
on a straight line

For +

Policy

Measurements

Agent

% 3en+a“ E-!-E
Training Deployment

] Motor torques

)

4@\ MathWorks

23

Creating the Environment

a| MWalkingBipedRobot_Template # [Pa|Walking Robot b

3 3
, 3 3
inpR

Torque Scaling R

: t ’
max orque
3 = 3

inpL
= Torque Scaling L

meask
{1} - sensors
mEi;sL Er
11{11} [
11{11
meas {11 —tB F
tarﬁue%a T T Sensors
H) F}Ef’B)
Robot Leg R
: Right Hip to Torso
. G W e B#F
6-DOF Joint
World and Ground
11{11}
meas ——Rl Glal
tolues — e
H F¥n/B

Robot Leg L

38{38)
38({38) @

S58Ns0rs

"

Left Hip to Torso

Torso

Reward Shaping 5

—

(¢

Walking Robot: Reinforcement Learning (2D)

Copyright 2019 The MathWorks, Inc.

Enable animation
T 6x1) gt E L]
6x1]L_z < [y left 3 Disable animation
Actions
=J»| meas 201
%{38} ohservation [29x1] - 1I]r~ observation (6x1]
revAct X . A
el i action ———9 & inpR
Calculate Observation 3
6x1
=P meas (1] 38{38}
{38} reward P reward SeNsors
prevAct SEensors
[6x1]
Calculate Reward
cumulative_reward D "3 InpL
meas _isdone P isdone
38{38} Reward 3 torques per leg
Check if Done {erie Rt Walking Robot

25

gL

DESIGNER

o g | 7 s | B v

Mew Import Cuplicztes - Fit =4, Zoom Out Auto Analyze Export
= Paste | toView Arrange -
FILE BUILD MAVIGATE | LAYOUT |ANALYSIS | EXFORT |

LAYER LIBRARY

e
=
|

imagelnputLayer
image3dinputLayer

sequencelnputLayer

K]] E

roilnputLayer

L]
=]
=

MVOLUTION AND FULLY CONMECTED

convolution2dLayer

| L]

convolution3dLayer

groupedConvolutionZdLayer

transposedConvZ2dLayer

) L LA

transposedConv3dLayer

fullyConnectedLayer

n lstmLayer

H hilstml| awver

W

LA
m

%)
m

=]
(s
I"_I

-

%,

Q???Wat'o_”ﬁ ’
imagelnputLaye

ActorFC1

fullyConnected. ..

L S]
ActorRelu1
reluLayer

ActorFC2

fullyConnected. ..

- ActorRelu2
reluLayer

PROPERTIES
Mumber of layers
Mumber of connections
Input type

Cutput type

]|

Image

Mone

Creating the Agent

Walking RObOt: Reil agentOptions = rlDDPGAgentOptions;

agentOptions.SampleTime = Ts;

Copyright 2019 The MathWo| agentOptions.DiscountFactor = 0.99;

agentOptions._MiniBatchSize = 128;

; [6x1] agentOptions.ExperienceBufferlLength = 1le6; right g‘ I Enable animation
[6x1] z agent = rlDDPGAgent(actor,critic,agentOptions); left 3> Disable animation
Actions
[
meas ~|[29x1]
observation P observation
prevAct [29x1] " 3
action ll'lpR
Calculate Observation B 3
[6x1]
meas 38(38}
reward P reward sensors
prevAct sensors
Calculate Reward

D —g- inpL

Reward 3 torques per leg
(ankle knee hip) Walking Robot

cumulative_reward

meas isdone P isdone
38(38}]

Check if Done
+

27

Training the Agent

i n+”“

trainOpts.UseParallel = true;

trainOpts.ParallelizationOptions.Mode = "async';

4 Reinforcement Learning Episode Manager - X

200+ Episode Reward for walkingRobotRL2D with riDDPGAgent Training Progress (04-Feb-2019 22:03:20)

—&— EpisodeReward
+ AverageReward
EpisodeQ0

Episode Information

Episode Number 2178
Episode Reward 925584
Episode Steps 400

Episode Q0 58.0514

Total Number of Steps 233493

Average Results

Average Reward 1000177
Average Steps 308,183

Window Length for Averaging 250

Eplsode Reward

Training Options
Hardware Resources for Actor and Critic cpu cpu
Learn Rates for Actor and Critic 0.0001 0.001
Maximum Number of Episodes 20000
Maximum Steps per Episode 400

Final Results
Training Stopped by AverageReward
Training Stopped at Value 100
Elapsed Time 12363 sec

50 L s L L)
0 500 1000 1500 2000 2500
Episode Number

4@\ MathWorks 28

Mechanics Explorers - Mechanics Explorer-riWalkingBipedRobot_Template
File Explorer Simulation View Teols Window Help

o ZopovTon v W b B OEQAL |G

e 1157055

Applications of Reinforcement Learning

e
IR — g e
_F--"‘L_Ff___-f ,//_Ff
e wne S
i ' S _ﬂ__ﬂ-ﬂ'fp—d—
_,——F'_Ff#-_’_#_
e
Qsupply
| (P Tank
Reservoir —ﬁz_) Qoermand
eman
o
4,_J_ L P,

‘\ MathWorks 30

Autonomous Driving Example

Environment

Image (Observation)

RL Agent

Traditional

Controller

Steer, throttle,
Start/Goal 4 brake

I £
< > — Car Position (Observation) J

Objective: Augment traditional controller with
reinforcement learning to improve lap time

\B EXPO 4@\ MathWorks

31

| L Tral nlng EnVIron ent I —»u -‘ y ¥ Image Ei:gf:; ——— what the RL Agent or the CNN sees cmeer:v: [stearfL]
fcn > »- [mccelRL]
CAcoel
Driver correction with Reinforcement Leaming — < [brakeRL]
<Braker —

=
Time I:S] — Reshape

Simulation 30 Engine

Image processing for Training = [[iE0one] >

(e camera at driver seat and a bird view camers for simulation use False ——| false
n1

o

RGE for newal net

Driver Seat Camera

CNN with 2 outputs (steer and accet+brajg) | =_ [resetFlag]
= = [accelRL]
_—[brakeRL|

o
:
£
0
i
i
2
5
m
B
a,
u
]
£

REZE far iaining -———] Call trained CNN

Image Processing

[EGE——»
Mo > %

In

n - Steer Distwbance
Qut
. Resal brake - Diiver
[VehFdbk] —p] vehFbk ﬂ . Acend Digturhance
e Maniial Driver — Disturbance Injaction
[carPosionFromES == —— Bodyxy - l
[distanceAlongMidlai= —w Ditance - [Environment
(i e ot et e | <) Model
yawhngle_RelativeToMidlane] — “faw angle relative to midlane —

Manual Driver '3,""5;’&:\
I - Traditional ; !;‘\,\

RO ‘ >
>
= = Controller \ s
pom *
[[WenF] N .
> " - P ‘ehicl
o TS A assanger Viehicle
., Controflers
i Ly [TH
g (T8
<]
[yawRate_fizedRef] distanceAlonghidlans = [distanceAlongMidlans]
- . soss|————»3
Velocy] —
‘nﬁngle_ﬁelaliueToMudlane de = [yawAngle_RelativeToMidlane]
trackY waskY geometricCalculations n(s) |
OriverSignae .
s,
velocity_kpl trackDist trackDist IateralDistance_RelaliveToMidlane —[lEteralDistance_Relative ToMidlans]
locity_kph! ackDi m(s) D RelativaToMidl:
elocity_kpl dens)
PE— _’Loggeﬁala trackYawAngle rackYawAngle
distancaAlongMidiane] [yawRate_fxedRef] reselFlag IresetFlag]
! Distancd yawAngleFixedrial
=" <Body> > [resetFlag] Geometric Calculations

B B)XXPO 4\ MathWorks 32

e

ad a e n +b“ Simulation 3D Engine

) [—>—»{ ist
ing —— Veloci
Image processing for Training ke tyer us signal ity o
One camera at driver seat and a bird view camer, for simulation use False s itch3 Sho:rle. dep
i RL Agent P ey i
le_Relative Angle :
" ha_ » ,
Driver Seat Cameard RGB for neural 24 | — y : gl
Gt i 2 udut (o ResetFlag
In2 0 2 15k
AutoVrtlEny (64-bit, PCD3D_SM3)
& -IRL
BlrdView Camera (instead of a GPS) m_’ MRL
RG8 for training
elocty Torakerl]

Image Procassing

RL Reward

' ¥ |)BS Vehicle Model with 14 DOFs Body, Mapped Engine, and simplified Driveline]
Yy tLea =M

Visualization

Episode Reward for OvalTrackVDBSgL19a with rIDDPGAgent ~ " &) € (]

08

0.7F

o
o
T

Passenger Vehicle

Episode Reward
o
w
T

»<Tosa
04F Training Options =
i velocit >
Hardware Resources for Actor and Critic cpu cpu mis it —
03k Learn Rates for Actor and Critic 0.001 0.0001 trackX num(s) L
- & 3 *wAngIeiﬂelauve
Maximum Number of Episodes 5000 s geometricCalculations den(s)
Maximum Steps per Episode 167
02 trackDist lateralDistance _Realative’ num(s)
E - den(s) [|
inal Resul
ok esults trackYawAngle
01k Training Stopped by T| resetFlag » [resetFlag] |
Training Stopped at Value ... 5 [yaw tad) Py gleFixedF
Elapsed Time ... Geometric Calculations
0 L 1 1 1 1 1 L 1 L J
0 0.1 02 03 04 05 0.6 0.7 0.8 09 1

Episode Number

B EDXIPO 4\ MathWorks 33

Results

Traditional controller +

Lap time (s) reinforcement learning
50 | @ AutoVrtiEny (64-bit, PCD3D_SM5) ‘ == E, X
40|
_ O
30 c qC)
O —
I N O
20 0 7
m m
10} +
i
nd
0

| 30% performance improvement |

EXIPO &\ MathWorks 34

Reference Applications in Documentation

Hip joint ——% |
= < I
Knes joint —» ‘ Ll
Ankle joint [:

= Controller Design

= Robotic Locomotion

« Lane Keep Assist

- Adaptive Cruise Control

= Imitation Learning

I o
Train DDPG Agent to Train Biped Robot to Walk Train DDPG Agent for
Control F|y|ng P ahnt lleinm MNPE Anant Ardantive Cruica Control

Train a reinforcement

to control a fiying rob ™ l 1 1 }

—
Train DQN Agent for Lane
Keeping Assist

Train a reinforcement learning agent
for a lane keeping assist application.

LAB BXIPO

I

Mearning agent
Bcontro

F
Train DDPG Agent for Path

Following Control

Train a reinforcement learning agent
for a lane following application.

&\ MathWorks 35

Pros & Cons of Reinforcement Learning

Pros cons

= No data required before training = Trained policies are hard to verify

o _ (no performance guarantees)
= New possibilities with Al for

hard-to-solve problems - Many trials/data points required
(sample inefficient)
- Complex end-to-end solutions can — Training with real hardware can be
be developed expensive and dangerous
= Uncertain, nonlinear environments = Large number of design parameters
can be used — Reward signal

— Network architectures
— Training Hyperparameters

Simulations are key in Reinforcement Learning

LAB BXIPO &\ MathWorks

36

How Can MATLAB and Simulink Help?

Challenges MATLAB&SIMULINK

= Trained policies are hard to verify = Reuse existing code and models for
(no performance guarantees) environments

= Many trials/data points required
(sample inefficient)

— Training with real hardware can be
expensive and dangerous

= Use simulations for policy
verification
— Simulate extreme scenarios

//

Run simulation trials in parallel to
= Large number of design parameters accelerate training

— Reward signal
— Network architectures
— Training Hyperparameters

Consult Reinforcement Learning
Toolbox examples
— lterative tuning with simulations

LAB BXIPO &\ MathWorks 37

/

Key Takeaways

= What is reinforcement learning and why should | care about it?
- How do | set up and solve a reinforcement learning problem?

« What are some common challenges?

[LAB BEXIPO &\ MathWorks 38

earn More

- Reference examples for controls, EEES o ——

Knee joint ———»

robotics, and autonomous system =8
ap pl i Cati O n S 'I":ilin DDIF'G Agent to | 'I"gin Biped Robot to Walk 'I::iin I;DPG Agent for

Control Flying Robot Using DDPG Agent Adaptive Cruise Control

Train a rei ement learning agent Train a rei
to control a flying robot model to controla b
4\ MathWorks]

« Documentation written for e e

Reinforcement Learning Toolbox

. . :
engineers and domain experts s o o E
Reinforcement Learning Toolbox™ provides functions and blocks for training policies [Release Notes |

using reinforcement learning algorithms including DQN, A2C, and DDPG. You can & PDF Documentation +

use these policies to implement controllers and decision-making algorithms for -

complex systems such s robots and autanomous systems. You can implement the \gent for Lane Train DDPG Agent for Path
policies using deep neural networks, polynomials, or look-up tables sist Followi ng Control

The toolbox lets you train policies by enabling them to interact with environments
represented by MATLAB® or Simulink® models. You can evaluate algorithms

experiment with hyperparameter settings, and monitor training progress. To improve

training performance, you can run simulations in parallel on the cloud, computer ¥ment learning agent Train a reinforcement learning agent

clusters, and GPUs (with Parallel Computing Toolbox™ and MATLAB Parallel c £ i nlicat
Server™) i assist application. for a lane following application.

. .
Through the ONNX™ model format, existing policies can be imported from deep

| learning frameworks such as TensorFlow™ Keras and PyTorch (with Deep Learning
Toolbox™). You can generate optimized C. C++, and CUDA code to deploy trained

policies on microcontrollers and GPUs

The toolbox includes reference examples for using reinforcement leaming to design

Reinforcement Learning concepts

Getting Started
Learn the basics of Reinforcement Learning Toolbox

E nviron mef\+

MATLAB Environments
Model reinforcement leaming environment dynamics using MATLAB

Simulink Environments
Model reinforcement learning environment dynamics using Simulink models

Policies and Value Functions

- Reinforcement Learning ebooks

Agents
Create and configure reinforcement learning agents using common algorithms, such as SA Okservation

available at mathworks.com Tt (st gt

Camera vision

Policy Deployment
Code generation and deployment of trained policies

TLAB BXIPO &\ MathWorks 39

