MATLAB EXPO

Meet Certification Standards with Automated Requirements Based Testing

Gaurav Ahuja Application Engineer Aravind Singh Senior Application Engineer

Challenge to Deliver Complex Systems and Meet Standards

- Need to meet industry or customer's standards
 - DO-178C (Aero), ISO 26262 (Auto), IEC 62304 (Medical), IEC 61508 (Industrial), MISRA, etc.
- Time and cost for safety critical projects estimated 20-30 times more costly*
- Finding defects late increases cost and time

*Source: Certification Requirements for Safety-Critical Software

ISO 26262-6:2018 notes Simulink and Stateflow as Suitable for Software Architecture, Design and as basis for Code Generation

Table 5 — Notations for software unit design							
	Natations	ASIL					
	Notations	A	В	С	D		
1a	Natural language ^a	++	++	++	++		
1b	Informal notations	++	++	+	+		
1c	Semi-formal notations ^b	+	+	++	++		
1d	Formal notations	+	+	+	+		
a Natural language can complement the use of notations for example where some topics are more readily expressed in natural language or provide an explanation and rationale for decisions captured in the notations.							
EXAMPLE To avoid possible ambiguity of natural language when designing complex elements, a combination of an activity diagram with natural language can be used.							
b Semi-formal notations can include pseudocode or modelling with UML®, SysML®, Simulink® or Stateflow®.							
NOTE UML®, SysML®, Simulink® and Stateflow® are examples of suitable products available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of these products.							
NOTE In the case of model-based development with automatic code generation, the methods for representing							

Table 2 Software Architecture Design Notations has similar suitability wording for use of Simulink and Stateflow

MATLAB EXPO

Qualify tools with IEC Certification Kit and DO Qualification Kit

Qualify code generation and verification products

MATLAB EXPO

Includes documentation, test cases and procedures

Qualify tools with IEC Certification Kit and DO Qualification Kit

- Qualify code generation and verification products
- Includes documentation, test cases and procedures

Qualify tools with IEC Certification Kit and DO Qualification Kit

- Qualify code generation and verification products
- Includes documentation, test cases and procedures

MATLAB EXPO

Conform to Certification Standards with Reference Workflow

Model Verification: Discover design errors at design time

Code Verification: Gain Confidence in the Generated Code

Manage Requirements

Model Verification

- Manage requirements
- Check standard compliance

- Systematically test
- Measure model coverage
- Detect design errors
- Prove model behavior compliance

Manage Requirements

- Ensure all requirements implemented
- Verify the implementation is correct
- Respond quickly to requirement changes

Work with Requirements, Architecture and Design Together

Demo: Requirements Perspective

MATLAB EXPO

Test and Requirements Traceability

MATLAB EXPO

Review and Analyze Traceability with Traceability Matrix

Requirement is missing link to Test Case

Review and Analyze Traceability with Traceability Matrix

- Review links between different requirements, model, test
- Filter view to manage large sets of artifacts
- Highlight missing links
- Directly add links to address gaps

MathWorks[®]

Systematic Functional Testing of Model

Model Verification

- Manage requirements
- Check standard compliance
- Systematically test
- Measure model coverage
- Detect design errors
- Prove model behavior compliance

Automate functional testing with Simulink Test

Systematic, integrated, and automated functional testing solution

Requirements Based Verification with Simulink Test

Measure completeness of testing

Model Verification

- Manage requirements
- Check standard compliance

- Systematically test
- Measure model coverage
- Detect design errors
 - Prove model behavior compliance

Coverage Analysis to Measure Testing

Test and Requirements Traceability in Coverage Results

Scoping Model Coverage to Requirements-Based Tests

Scoping Model Coverage to Requirements-Based Tests

24

R2020a

Test and Requirements Traceability in Coverage Results

Test and Requirements Traceability in Coverage Results

Address missing Requirements Based Test Coverage

Add missing implementation links to requirements

Update test to increase target speed

100% Coverage but Testing Identified Error in Implementation

 Results: 2020-Mar-02 23:59:38 	5 💿 1 💿
 cruiseControlRBTCovTests 	5 👩 1 👩
	5 🥑 1 😋
Brake Test	0
Decrement Test	0
Enable Test	0
Increment Test	0
Set Speed Test	0
Throttle Test	0

▼AGGREGATED COVERAGE RESULTS

Create a coverage report from coverage results to justify or exclude missing coverage. The filters and updated coverage values will be displayed with this result.

2

Additional Testing Identified Error in Implementation

Scoped Model Coverage to Requirements-Based Tests R2020a

A Test Manager	- 🗆 X
TESTS Test Browser Results and Artifacts	Results: 2019-Oct-02 19:02:58 ×
Filter results by name or tags, e.g. tags; t	▶ SUMMARY ?
NAME STATUS	
✓ Results: 2019-Oct-02 19:02:58 2 ⊘	▼AGGREGATED COVERAGE RESULTS ?
	ANALYZED MODEL REPORT COMPLEXI DECISION EXECUTION
✓ ☐ MyTestSuite 2 ⊘	MaintestReqLinkBasic
▶	
▶ 🗐 Testcase 2 📀	·
	Add Tests for Missing Opuscon
	Scope coverage results to linked requirements
	MultiPortSwitch block "MPSwitch1"
	Requirement Testing Details
	Implemented Requirements Verified by Tests Associated Runs
coverage information c	Dilected Requirement 1 Testcase 1 T1
during requirements-base	
to confirm that	Coverage Cyclomatic Complexity 2
	Decision 33% (1/3) decision outcomes
	Execution 100% (1/1) objective outcomes
	Execution 100% (1/1) objective outcomes Decisions analyzed
	Execution 100% (1/1) objective outcomes Decisions analyzed Itruncated input value 33% Itruncated input value
	Execution 100% (1/1) objective outcomes Decisions analyzed Truncated input value 33% = 1 (output is from input port 1) 51/51 T1 Hit by linked RBT Satisfied
	Execution 100% (1/1) objective outcomes Decisions analyzed truncated input value 33% = 1 (output is from input port 1) U(0)51 Hit by linked RBT Satisfied
	Execution 100% (1/1) objective outcomes Decisions analyzed truncated input value 33% = 1 (output is from input port 1) = 2 (output is from input port 2) Hit, but not by linked RBT Unsatisfied Hit, but not by linked RBT Unsatisfied

Check standard compliance

Model Verification

Verify Design to Guidelines and Standards

Check for:

- Readability and Semantics
- Performance and Efficiency
- Clones
- And more.....

Built in checks for industry standards and guidelines

- DO-178/DO-331 •
- **ISO 26262** •
- **IEC 61508** •
- **IEC 62304** •
- EN 50128 •

- MISRA C:2012
- CERT C, CWE, ISO/IEC TS 17961 •
- MAB (MathWorks Advisory Board)
- JMAAB (Japan MATLAB Automotive Advisory Board) •

Shift Verification Earlier With Edit-Time Checking

Detect Design Errors with Formal Methods

Model Verification

Detect Design Errors Using Formal Methods

- Find design errors
 - Integer overflow
 - Dead Logic
 - Division by zero
 - Array out-of-bounds
 - Range violations
- Generate counter example to reproduce error

Prove Model Behavior Compliance

Model Verification

Proving Model Meets Requirements

Safety Requirement:

When the brake is applied for three consecutive steps, the throttle shall go to zero.

 Need to ensure the design performs correctly

Model functional and safety requirements

Link requirements to properties

Prove That Design Meets Requirements

Debugging Property Proving Violations

MATLAB EXPO

 \times

- 🐨

Resolve unexpected behavior in a model with Model Slicer

Isolate

Find the area of the model responsible for unexpected behavior

Analyze dependencies

Understand data & control dependencies in large or complex models

Inspect slice regions

Highlight model slices for time windows or failure states & transitions for state flow.

Debug simulation behavior

Step through precompiled slices to understand signal and port value propagation

Correct Model

MATLAB EXPO

MathWorks[®]

Code Verification: Gain Confidence in the Generated Code

Back-to-Back Testing

Automate Test Creation using Test Manager Wizard

		-	-	20	-	-	-	1	-	-	
U	Ŀ3	11		11		R	F	Δ	T	F	
7	~		~	10	-	12	-			•	

Test File from Model

Create a test file from model

Test for Model Component			
Create a new baseline or back-to-	<u>B2</u> E		

Test from Spreadsheet Create a new test with data specif

rtwdemo_sil_block_Harness1
B2Btest » New Test Suite 1 » rtwdemo sil block Harness1
Equivalence Test
Select releases for simulation: Current
Description Test second for the subsurders bluels/Oestellad
lest generated for the subsystem rtwdemo_sil_block/Controller.
▼ SIMULATION 1
▼SYSTEM UNDER TEST*
Model: rtwdemo_sil_block
▼ TEST HARNESS*
Harness: rtwdemo sil block Harness1
▼ SIMULATION SETTINGS OVERRIDES"
Simulation Mode: Normal Override model blocks in SIL/PIL mode to normal mode
✓ SIMULATION 2 Copy settings from Simulation 1
▼ SYSTEM UNDER TEST*
▼ TEST HARNESS*
Harness: rtwdemo_sil_block_SILHarness1
✓ SIMULATION SETTINGS OVERRIDES*
Simulation Mede: Software in the Leon /SIL)

MATLAB EXPO

- Guided steps to define component to test, inputs, type of test and format for output
- Auto generate tests using Simulink Design Verifier

Cross Release SIL/PIL Test Harness Generation

- Create a SIL/PIL test harness using code that was generated in a previous release
- Modify existing SIL/PIL test harnesses to store the build folder path information which can be used for rebuild

Reference Workflow for Generated Code

Customer References and Applications

Airbus Helicopters Accelerates Development of DO-178B Certified Software with Model-Based Design

Software testing time cut by two-thirds

LS Automotive Reduces Development Time for Automotive Component Software with Model-Based Design Specification errors detected early

Continental Develops Electronically Controlled Air Suspension for Heavy-Duty Trucks

Verification time cut by up to 50 percent

More User Stories: www.mathworks.com/company/user_stories.html

Services

MathWorks Training Service

Flexible delivery options:

- Public training available in several cities
- Onsite training with standard or customized courses
- Web-based training with live, interactive instructor-led courses

More than 48 course offerings:

- Introductory and intermediate training on MATLAB, Simulink, Stateflow, code generation, and Polyspace products
- Specialized courses in control design, signal processing, parallel computing, code generation, communications, financial analysis, and other areas

https://www.mathworks.com/services/training.html

MATLAB EXPO

MathWorks Consulting Service

- Early Verification and Validation with Model-Based Design
- DO 178 Certification Advisory Service
- ISO 26262 Process Deployment Advisory Service
- Model-Based Design Process Establishment
- Model-Based Design Process Assessment and Maturity Framework
- <u>Tools Integration</u>
- <u>Developing Embedded Software</u>
- Ask about on how we can quickly get you started on System Composer for defining system architecture (<u>contact consulting</u>)

https://www.mathworks.com/services/consulting.html

Use reference workflow to conform to standards

- Shift verification earlier
- Automate manual verification tasks (coding, compiling, back-to-back)
- Measure completeness of Requirements Based Testing

Learn More

- Verification, Validation, and Test Solution Page
- Requirements-Based Testing Workflow Example
- Verifying Models and Code for High-Integrity Systems
- <u>Getting Started with Model Verification and Validation</u>

Thank You!

