
Deploying Deep Learning on Embedded Devices

– When FPGAs Make Sense

Dr Rishu Gupta

Senior Application Engineer

Deep learning applications can be found across many industries

Aerospace &

Defense
Automotive Industrial Automation Medical Devices Communications

A
p

p
li
c

a
ti

o
n

s

Airborne Image Analysis Autonomous Driving Defect Detection Medical Image and

Signal Segmentation

Modulation

Classification

Industries

Key Takeaways

▪ MATLAB provides an easy workflow to prototype and deploy deep learning

algorithms on different embedded platforms

– Ease of deploying to GPUs like Nvidia Jetson, Intel and ARM based

CPUs/microprocessors

– Ease of deploying to Xilinx/Intel FPGAs and SoCs without hardware expertise

– Optimizing the deep learning networks through INT8 quantization

▪ We will use defect detection as an example to illustrate.

3

Demo Overview – Defect Detection Application

4

Why FPGAs /ASICs?

“Real-time image processing for an aircraft head’s up display”

“Evaluate the algorithm in field testing to analyze system performance”

“Optimal performance @ Piezo resonance frequency”

System Throughput

“11 year device with a 1 A*hr battery”

Power

“Be able to stop the robot with millimeter accuracy in less than 0.5
seconds without causing damage to the robot”

“Audio transducer prototypes must run in real time with low latencies”

“Motor control latency < 1us”

Latency

Same applies for deep learning

problems

Deep Learning Deployment: Inference on the Edge

Aerospace &

Defense
Automotive Industrial Automation Medical Devices Communications

R
e
q

u
ir

e
m

e
n

ts

Industries Domains:

• Image processing and Computer

Vision

• Radar Signal Processing …

Tasks:

• Image Classification

• Object Detection

• Semantic Segmentation ..

Real time - Latency

High Compute

Environmental Conditions (Space)

Low power, Custom application

High Speed

I/O

• Red – GPUs are ideal

• Blue – FPGAs are ideal

Reference articles:

https://www.arrow.com/en/research-and-events/articles/fpga-vs-cpu-vs-gpu-vs-microcontroller

http://mil-embedded.com/articles/fpga-gpu-evolution-continues/

Batch processing - Inference speed

https://www.arrow.com/en/research-and-events/articles/fpga-vs-cpu-vs-gpu-vs-microcontroller
http://mil-embedded.com/articles/fpga-gpu-evolution-continues/

Deployment is hard: Challenges

▪ Deployment to the edge is challenging because of resource constraints

▪ Manual workflows are tedious and require a significant front end cost

• How to decide the right target platform for your application/ How to have a

consistent process to deploy to multiple embedded platforms?

7

Skills Embedded constraints

CUDA/C++ Coding expertise Limited memory, Power

FPGA and Hardware expertise Real time performance - Latency

Deep learning networks are too big for FPGAs

Especially on FPGAs

▪ Large scale matrix computations

– TFLOPS: 230M weights and 724M MACs

▪ Complex architecture

– Scale of data movement across the DDR

Workflow:

▪ Exploring multiple networks

▪ Exploring the resource and performance tradeoffs

MATLAB supports the entire deep learning workflow – from Data to
Deployment

Ground truth labeling

PREPARE DATA

Data access and
preprocessing

Simulation-based
data generation

I Iteration and Refinement

TRAIN MODEL

Model exchange
across frameworks

Model design and
tuning

Hardware-
accelerated
training

DEPLOY SYSTEM

Edge, cloud,
desktop

Enterprise Systems

Embedded Devices

Ground truth labeling

Deep Learning Workflow – Deployment

Ground truth labeling

PREPARE DATA

Data access and
preprocessing

Simulation-based
data generation

Iteration and Refinement

TRAIN MODEL

Model exchange
across frameworks

Model design and
tuning

Hardware-
accelerated
training

DEPLOY SYSTEM

Edge, cloud,
desktop

Enterprise Systems

Embedded Devices

Ground truth labeling

Network

Optimization

Ex:

Quantization

Application logic

Coders

O
p

tim
iz

a
tio

n

NVIDIA GPU

Arm CPU

Intel CPU

Xilinx and

Intel SoCs and

FPGAsSingle source, Multi-target deployment

Trained DNN

MATLAB enables multi-target deployment

Application logic

Optimized DNN

Multi-target deployment

Prototyping and Deployment workflow: GPUs and CPUs

Resources:

▪ Deploying Deep Neural Networks to GPUs and

CPUs Using MATLAB Coder and GPU Coder

▪ Using GPU Coder to Prototype and Deploy on

NVIDIA Drive, Jetson

▪ Real-Time Object Detection with YOLO v2 Using

GPU Coder

▪ Image Classification on ARM CPU: SqueezeNet

on Raspberry Pi

▪ Deep Learning on an Intel Processor with MKL-

DNN

13

Defect detection deployed on

ARM Cortex-A microprocessor

https://www.mathworks.com/videos/search.html?q=&fq=product:GC
https://www.mathworks.com/videos/deploying-deep-neural-networks-to-gpus-and-cpus-using-matlab-coder-and-gpu-coder-1567105707114.html
https://www.mathworks.com/videos/using-gpu-coder-to-prototype-and-deploy-on-nvidia-drive-jetson-1571293977178.html
https://www.mathworks.com/videos/real-time-object-detection-with-yolo-v2-using-gpu-coder-1553781156610.html
https://www.mathworks.com/videos/image-classification-on-arm-cpu-squeezenet-on-raspberry-pi-1555060615835.html
https://www.mathworks.com/videos/deep-learning-on-an-intel-processor-with-mkl-dnn-1521719205310.html

Multi-target deployment

Deep learning networks are too big for FPGAs

Challenges of deploying Deep learning models on FPGAs

▪ Large scale matrix computations

– TFLOPS: 230M weights and 724M MACs

▪ Complex architecture

– Scale of data movement across the DDR

Workflow:

▪ Exploring multiple networks

▪ Exploring the resource and performance tradeoffs

Prototyping and Deploying Deep Learning Networks from
MATLAB to FPGA

16

1. No HDL Knowledge Required

2. Ease of prototyping on FPGA from MATLAB

3. Ease of exploring various DL networks and

customizing them to your application

Prototype

Verify
Trained DL Networks

User logic

function out = targetFunction(img)

%#codegen

coder.inline('never’);

%extract ROI as an pre-prosessing

[imgPacked, num, bbox] =

myNDNet_Preprocess(img);

%classify detected nuts by using CNN

scores = zeros(2,4);

for i = 1:num

scores(:,i) =

predict(imgPacked(:,:,i));

end

%insert annotation as an post-processing

out = myNDNet_Postprocess(img, num, bbox,

scores);

end

Extract regions Resize

Prediction from the trained network aka Inference

Annotate and label

18

Prototyping and Deploying Deep Learning Networks from MATLAB

to FPGA

Prototyping: Design Exploration and Customization

19

Prototype

Verify

Design iterations

Trained DL Networks

User logic

• Most cases, you want to customize the network for your

application: Deep Network Designer workflow

• Iteratively deploy and run on the FPGA

Design Exploration and Customization

20

Generate Custom DL Processor & Integrate Deep Learning network

into your application

Trained DNN

in MATLAB

User logic
Custom

DL Processor

Generation

Design iterations
Define custom

FPGA/SoC

reference design

(require HW engineer)

H
a
n

d
o

ff

HDL Code Gen

with HDL Coder

of threads, INT8/Single ..

Integrate Deep Learning network into your System

22

DDR Memory

Generated DL IPPre-Processing

Vendor Memory Interface IP

Post-

Processing
ARM Processor

Post-processing

Standalone system with DL Processor
HDL Coder MATLAB coder

Prototyping and Deploying Deep Learning Networks from MATLAB

to FPGA

▪ Supported boards:

– Xilinx boards - MPSoC - ZCU102, ZC706

– Intel Arria 10 SoC

– Custom boards via code generation

▪ Supported Networks

– CNNs: series networks – VGG, Alexnet etc.

– object detectors - YoloV2

Multi-target deployment

Model Quantization Library

FPGAs

GPUs

▪ Workflow to quantize & validate a network to INT8

▪ Visualize impacts of quantizing at layer level

▪ Customize quantization by skipping “loss-heavy”

layers

▪ 4x less memory, inference speedup

1

Import Network

2

Calibrate

3

Quantize and

Validate

Layer level

quantization knobs

Calibration Statistics
Dynamic range visualization

INT8 Quantization

26

INT8 Quantization

27

Network

Optimization

Ex:

Quantization

Application logic

Coders

O
p

tim
iz

a
tio

n

NVIDIA GPU

Arm CPU

Intel CPU

Xilinx and

Intel SoCs and

FPGAsSingle source, Multi-target deployment

Trained DNN

MATLAB enables multi-target deployment

Application logic

Optimized DNN

Customer References

Airbus: Artificial Intelligence & Deep

Learning for Automatic Defect Detection

29

• An integrated tool to design, train and deploy deep

learning models

• Interactive prototyping and testing in a very short

amount of time

• Direct translation from MATLAB language to CUDA

code

Running on NVIDIA Jetson

Customer References

Musashi Seimitsu Industry: Detect

Abnormalities in Automotive Parts

30

• Enable a seamless development workflow from image

capture to implementation on embedded GPU

• Image annotation for training and Preprocessing of

captured images

• Deployment to NVIDIA Jetson using GPU Coder

Deep Learning Deployment Solution Summary

▪ MATLAB provides an end to end workflow for the complete application

– offers an easy automated workflow for optimal deployment on different embedded platforms

– simplifies the workflow for FPGAs both for design exploration & prototyping as well as HDL code generation

▪ Call to action:

– Deep Learning onramp

– Services

▪ Training- Deep Learning using MATLAB

▪ Consulting

– Contact your rep to try GPU Coder or HDL Coder

31

Contact Details:

Email: rishu.g@mathworks.com

LinkedIn: https://www.linkedin.com/in/rishu-gupta-

72148914/

https://www.mathworks.com/learn/tutorials/deep-learning-onramp.html
mailto:rishu.g@mathworks.com
https://www.linkedin.com/in/rishu-gupta-72148914/

