Simulation of Full Duplex **Communication Systems**

April 24, 2019 Radha Krishna Ganti rganti@ee.iitm.ac.in

Joint work with Aniruddhan, Abhishek, Arjun Nadh

Current wireless devices are half-duplex

Ideal full-duplex doubles the available resources

Why is it difficult?

Self interference

Transmit signal: 20dBm

Transmit signal is about a billion times stronger than the receive signal

Receive signal: -70dB,

Large dynamic range

Typical TX-RX numbers

Self-Interference

Realising a full-duplex node

- Require about 90-110dB cancellation of self-interference
 - 55-60 dB in analog domain (before ADC)
 - Some cancellation required before LNA
 - 35-50 dB in digital domain

Self-interference model

Gain of path k

- x(t) is the RF signal
- Unknowns: Delays, gains, number of paths

Number of dominant paths

 $x(t) = \operatorname{Re}\left(u(t)e^{j2\pi f_c t}\right)$

Transmitted signal is know at the node

- Subtract the known self interference
 - Digital domain: x x = 0
 - Analog domain: x x = 0.001x
- Filtered self-interference
 - Delayed and scaled versions of the transmit signal

Bharadia, Dinesh, Emily McMilin, and Sachin Katti. "Full duplex radios." ACM SIGCOMM Computer Communic Vol. 43. No. 4. ACM, 2013.

$$I(t) = \sum_{k=1}^{N} a_k \operatorname{Re}\left(u(t-\tau_k)e^{j2\pi f_c(t-\tau_k)}\right)$$

$$I(t) \approx \operatorname{Re}\left(C_{1}u(t)e^{j2\pi f_{c}t}\right) - \operatorname{Re}\left(C_{2}u'(t)e^{j2\pi f_{c}t}\right)$$

Original channel has 2N+1 unknowns Only 2 unknowns in the approximated channel

$$I(t) = I_s(t) + I_d(t) + E(t)$$

$\begin{aligned} \mathbf{Circuit} & \mathbf{diagram}\\ I(t) \approx \operatorname{Re} \left(C_1 u(t) e^{j 2 \pi f_c t} \right) - \operatorname{Re} \left(C_2 u'(t) e^{j 2 \pi f_c t} \right) \\ I(t) = I_s(t) + I_d(t) + E(t) \end{aligned}$

Derivative (experimental proof)

 $\mathcal{F}(u'(t)) = f\hat{U}(f)$

Software ??

RF Blockset to the rescue

New idea: 6 months (might not work)

RF Blockset

- OFDM modulation
- RF Blockset: Circuit-envelope blocks to model the RF
 - Analog cancellation
- Self-Interference channel model
- **Digital cancellation**
 - Signal and derivative cancellation

BIOCKS USEC

- IQ Modulator/ IQ Demodulator
- Variable RF phase shifter
- Variable RF attenuator
- Custom analog cancellation algorithm (gradient descent)
 - Level-2 MATLAB S-Function
- Custom digital cancellation algorithm (derivative and LMS)
 - Level-2 MATLAB S-Function

Novice user: 1 week

Self-Interference

After Cancellation

Output from SIMRF

Faster GD convergence

Learning

Digital Cancelation

 $I(t) = c_0 x(t) + c_1 x'(t) + c_2 x''(t) + E_3(t)$

 $\approx I | n$ LJ Sum X

X

IRR: 25 dB

Memory Polynomial (3,5)

1 X power	5
	·
	P*
	-*
	-
1. X power	5
•	

An Excellent Platform for **Full-Duplex Work**

RF Blockset + Simulink

Thank You Any Questions/Comments?