MATLAB EXPO 2019

Sensor Fusion and Tracking for Next Generation Radar

Abhishek Tiwari Pilot Engineering Signal Processing and Communication

Agenda

 Closed-loop Multifunction Radar

- Target Tracking & Evaluation Metrics,
- Tracking Extended Objects & Large number of Objects
- Passive Sensor Angle Only Tracking

- Multisensor Detection
 Generation & Fusion
- Localization

Sensor Fusion and Tracking is...

Timeline of Technology Advances

Multi-object tracking

Air Traffic Control

Computer Vision for Transportation

Multi-sensor Fusion for Autonomous Systems

Localization

Timeline

A MathWorks[®]

Fusion Combines the Strengths of Each Sensor

Sensor Fusion and Tracking Toolbox [™] Phased Array System Toolbox [™]

Initially, all resources spent on search

•

- Once targets are detected, resources split 80% to 20% (search vs. track)
- Once second target moves farther away, resources freed up for search

Target 1 Detected

0.000000	sec:	Search	[-30.000000 0.000000]
0.010000	sec:	Search	[-27.692308 0.000000]
0.020000	sec:	Search	[-25.384615 0.000000]
0.030000	sec:	Search	[-23.076923 0.000000]
0.040000	sec:	Search	[-20.769231 0.000000]
0.050000	sec:	Search	[-18.461538 0.000000]
0.060000	sec:	Search	[-16.153846 0.000000]
0.070000	sec:	Search	[-13.846154 0.000000]
0.080000	sec:	Search	[-11.538462 0.000000]
0.090000	sec:	Search	[-9.230769 0.000000]
0.100000	sec:	Search	[-6.923077 0.000000]
0.110000	sec:	Search	[-4.615385 0.000000]
0.120000	sec:	Search	[-2.307692 0.000000]
0.130000	sec:	Search	[0.000000 0.000000] Target detected at 29900

Detection Confirmed and Track 1 Created

Radar Azimuth Coverage

0.000000	sec:	Search	[-30.000000 0.000000]
0.010000	sec:	Search	[-27.692308 0.000000]
0.020000	sec:	Search	[-25.384615 0.000000]
0.030000	sec:	Search	[-23.076923 0.000000]
0.040000	sec:	Search	[-20.769231 0.000000]
0.050000	sec:	Search	[-18.461538 0.000000]
0.060000	sec:	Search	[-16.153846 0.000000]
0.070000	sec:	Search	[-13.846154 0.000000]
0.080000	sec:	Search	[-11.538462 0.000000]
0.090000	sec:	Search	[-9.230769 0.000000]
0.100000	sec:	Search	[-6.923077 0.000000]
0.110000	sec:	Search	[-4.615385 0.000000]
0.120000	sec:	Search	[-2.307692 0.000000]
0.130000	sec:	Search	[0.000000 0.000000] Target detected at 29900.000000 m
0.140000	sec:	Confirm	[-0.000586 -0.000034] Created track 1 at 29900.000000 m

Track 1 Updated

📣 MathWorks

Integrate trackers into Larger Radar System Simulation

MathWorks[®]

Radar System Design with MATLAB and Simulink Antenna Toolbox ™ Phased Array System Toolbox ™

Agenda

 Closed-loop Multifunction Radar

•

- **Target Tracking & Evaluation Metrics,**
- Tracking Extended Objects & Large number of Objects
- Passive Sensor Angle Only Tracking

- Multisensor Detection Generation & Fusion
- Localization

Design multi-object trackers

Sensor Fusion and Tracking Toolbox[™] Phased Array System Toolbox [™]

Performing What-If Analysis

• 📣 MathWorks•

Performing What-If Analysis: Same Tracker, Different Model

GNN with CV

GNN with IMM

Performing What-If Analysis: Same Tracker, Different Model

```
tracker = trackerGNN( ...
 'FilterInitializationFcn',@initCVFilter,...
 'MaxNumTracks', numTracks, ...
 'MaxNumSensors', 1, ...
 'AssignmentThreshold',gate, ...
 'TrackLogic', 'Score', ...
 'DetectionProbability', pd, ...
 'FalseAlarmRate', far, ...
 'Volume', vol, 'Beta', beta);
```

```
tracker = trackerGNN( ...
'FilterInitializationFcn',@initIMMFilter,...
'MaxNumTracks', numTracks, ...
'MaxNumSensors', 1, ...
'AssignmentThreshold',gate, ...
'TrackLogic', 'Score', ...
'DetectionProbability', pd, ...
'FalseAlarmRate', far, ...
'Volume', vol, 'Beta', beta);
```

Performing What-If Analysis: Different Trackers, Same Model

GNN with IMM

MathWorks®

Performing What-If Analysis: Different Trackers, Same Model

```
tracker = trackerGNN( ...
'FilterInitializationFcn',@initIMMFilter,...
'MaxNumTracks', numTracks, ...
'MaxNumSensors', 1, ...
'AssignmentThreshold',gate, ...
'TrackLogic', 'Score', ...
'DetectionProbability', pd, ...
'FalseAlarmRate', far, ...
'Volume', vol, 'Beta', beta);
```

```
tracker = trackerTOMHT( ...
```

'FilterInitializationFcn',@initIMMFilter,..

'MaxNumTracks', numTracks, ...
'MaxNumSensors', 1, ...
'AssignmentThreshold',[0.2,1,1]*gate, ...
'TrackLogic', 'Score', ...
'DetectionProbability', pd, ...
'DetectionProbability', pd, ...
'FalseAlarmRate', far, ...
'Volume', vol, 'Beta', beta, ...
'Volume', vol, 'Beta', beta, ...
'MaxNumHistoryScans', 10, ...
'MaxNumTrackBranches', 5,...
'NScanPruning', 'Hypothesis', ...
'OutputRepresentation', 'Tracks');

Comparing Trackers and Tracking Filters

-17

-17.5

-18

-18.5

-19

-19.5

-20

-20.5

-2

-1.5

Y (km)

÷

-1

-0.5

~~<u>~</u>*******

DivergenceStatus

Tracks

ter - Alter and the Alter - Alter

1.5

2

•

مراد مناجعته والمراد

(history)

Detections

(history)

AccidnodTouthTD

-1

-0.5

0

X (km)

TrackTD

-17

-17.5

-18

-18.5

-19

-19.5

-20

-20.5

-2

-1.5

Ч (km)

False track Dropped track

Sunviving

HACKID	AssignedituciiiD	Surviving	Totartength	Divergencescatus	
1	2	true	190	false	
2	NaN	false	77	true	
8	3	true	111	false	
TruthID	AssociatedTrackID	TotalLength	BreakCount	EstablishmentLength	
2	1	192	0	4	
3	8	192	1	2	

GNN with IMM

Totall ongth

TOMHT with IMM

Tracks

100-1000 (100-00) - 100-00

1.5

2

0

والمركبة والمركبة والمركبة

(history)

Detections

(history)

TrackID	AssignedTruthID	Surviving	TotalLength	DivergenceStatus				
1	2	true	191	false				
2	3	true	191	false				
TruthID	AssociatedTrackID	TotalLengt	n BreakCount	EstablishmentLengt				
2	1	192	0	1				
3	2	192	0	2				

JPDA with IMM

Faster

MATLAB EXPO 2019

1

0.5

Slower

0

X (km)

0.5

MathWorks[®]

Tracker Performance Comparison

- GNN and JPDA can track the targets 5 to 6 times faster than MHT depending on the motion model
- The IMM motion model makes all three trackers run 3 to 4 times slower
- Tracker processing time varies differently depending on the scenario's number of target, density of false alarms, density of targets

Track Large Numbers of Objects (Efficiently)

Test Tracker Performance on Pre-Built Benchmark Trajectories

Track Extended Objects with Marine Radar

- Estimate position, velocity, size and orientation
- Maintain tracks through occlusions

Challenges of Passive Ranging Using a Single Maneuvering Sensor

Passive Ranging Using a Single Maneuvering Sensor

MSC or cartesian coordinates?

MathWorks[®]

Tune and Compare Passive Ranging Trackers with Error Metrics

Range-parameterized MSC-EKF converges faster than single MSC-EKF

Flexible Workflows Ease Adoption: Wholesale or Piecemeal

Agenda

T2 A:4029m↔0m/s 285 km/hr H:359 deg T3 A:3082m↔1m/s 890 km/hr H:359 deg

- Closed-loop Multifunction Radar
- Target Tracking & Evaluation Metrics,
- Tracking Extended Objects & Large number of Objects
- Passive Sensor Angle Only Tracking
- Multisensor Detection
 Generation & Fusion
- Localization

Multiplatform Detection Generation and Fusion

Visualize Detections and Measurement Uncertainties

Tune and Compare Trackers with Assignment Metrics

Assess Tracker Performance with Assignment Metrics

Visualize Track Accuracy

Visualize Track Accuracy and Uncertainty

Fuse IMU & GPS for Airborne Platform

To go further on localization, see also

Inertial Sensor Noise Analysis Using Allan Variance

Use the Allan variance to determine noise parameters of a MEMS gyroscope. These parameters can be used to model the gyroscope in R2018b

Rotations, Orientation and Quaternions

Reviews concepts in threedimensional rotations and how quaternions are used to describe orientation and rotations.

Open Script

R2018b

-1

Z-axis Rotation (Yaw)

Y-axis Rotation (Roll)

X-axis Rotation (Pitch)

60

Lowpass Filter Orientation

Using Quaternion SLERP

Use spherical linear interpolation

(SLERP) to create sequences of

guaternions and lowpass filter noisy

trajectories. SLERP is a commonly

SLERP Interpolation Parameter : hrange = 0.4, hbias = 0.4

80

Noise

- Tout

100

Open Script

field strength along a sensor's X,Y and Z axes. Accurate magnetic field measurements are essential for

R2019a

Open Script

R2018b

Ground

Summary

 Closed-loop Multifunction Radar

•

- Target Tracking & Evaluation Metrics,
- Tracking Extended Objects & Large number of Objects
- Passive Sensor Angle Only Tracking

- Multisensor Detection Generation & Fusion,
- Localization

Waveform Classification Using Deep Learning (Radar and Comms)

Data synthesis for 3000 signals/ modulation type with random variations & impairments

A Radar Waveform

R2019a

MathWorks[®]

Classification Using Deep Learning

Classify radar waveform types of generated synthetic data using the Wigner-Ville distribution (WVD) and a deep convolutional neural network

Deep Learning Toolbox [™] Phased Array System Toolbox [™] Communications Toolbox [™] Signal Processing [™]

DSB-AM signals misclassified as SSB-AM and SSB-AM as DSB-AM.

Modeling Radar Systems using Phased Array Systems Toolbox

This one-day course provides a comprehensive introduction to the Phased Array System Toolbox[™]. Themes including radar characterization and analysis, radar design and modeling and radar signal processing are explored throughout the course.

Topics include:

- Review of a Monostatic End-to-End Radar Model
- Characterize and analyze radar components and systems
- Design and model components of a radar system
- Implement a range of radar signal processing algorithms

Learn More

Phased Array System Toolbox

Sensor Fusion and Tracking Toolbox NEW PRODUCT

Please visit our Technology Showcase for more details on the workflows

https://www.mathworks.com/products/phased-array.html

MATLAB EXPO 2019

https://www.mathworks.com/products/sensor-fusion-and-tracking.html

Please provide feedback for this block of sessions

- Scan this QR Code or log onto link below (link also sent to your phone and email)
- <u>http://bit.ly/expo19-feedback</u>
- Enter the registration id number displayed on your badge
- Provide feedback for this session

Email : <u>Abhishek.Tiwari@mathworks.in</u> LinkedIn:<u>https://www.linkedin.com/in/abhishek-tiwari-33778316/</u> Twitter: https://twitter.com/AbhishekTwr1