Design and implementation of a digital wireless system (compliant to IEEE802.15.4) with channel emulation capability using Matlab Simulink and Zync SoC-SDR Platform

MATLAB EXPO 2019, Hyderabad

Bibin Varghese
Dr S Sreelal
VSSC Trivandrum

Integrated Software-Defined Radio on Zynq®-7000 SoC
Outline

- Introduction
- Existing Wireless Instrumentation System (WIS) and the motivation to emulate the same using Model based SDR techniques
- Model based design flow with Matlab simulink
- Addressing SoC design challenges with Matlab
- Simulink Modeling of IEEE802.15.4 Transmitter & Receiver
- Experimental Test bed and Results
- Benefits of model based SDR development & Future Scope
Introduction

- The testing, verification and evaluation of indoor wireless systems is an important but challenging endeavor.
- The most realistic method to test the wireless system is a field deployment. Unfortunately, this is not only expensive but also time consuming.
- Real-time hardware in the loop RF channel emulation fills the gap left between simulation and field testing.
- In this work, we present the design and implementation of a programmable digital wireless system (Tx-Rx pair) with channel emulation capability, which connects directly to our DUT radio, and mimics the wireless channel as well as other impairments between them, in real-time using Matlab simulink & Zync-SDR platform.
 - We describe a fast and accurate way of development and deployment of the entire system using model based design running on SDR.
Motivation - Existing Wireless Instrumentation System (WIS)

WIS Architecture

- **WSN 01**
- **WSN 02**
- **WSN 03**
- **WSN 04**
- **2.4GHz ISM band**

IEEE802.15.4 PHY

- F1
- F2
- F2 - F1 > Bc
- TDMA Frame
- λ/4

Channel Impairments

- Transmitter as well as the receiver built on SDR platform not only simplify the testing but also bring efficient solutions like channel equalization, melioration of PHY layer etc to address the root cause of the channel impairment.

- The advances in platforms and tools will allow developers to quickly simulate and prototype such wireless applications while establishing and maintaining a deployable path to production too.

- **PHY of WIS is compliant to IEEE802.15.4. It cannot be used as such for robust communications in aerospace applications where the multi-path effects are more.**

- **COTS radio transceivers were used for the realization of WIS which doesn't give access to the PHY layer for any channel error mitigation.**

- **System robustness in presence of multi-path fading is enhanced by providing three types of diversity techniques (Frequency, Spatial & Temporal) in the MAC layer.**

- **Assessing the performance of this entire system in presence of different channel impairments is a challenging as well as expensive task with traditional test systems.**
IEEE802.15.4 PHY

Transmitted Bit stream (LSB First) 250kbps

62.5Ksymb/s

Symbol to Chip DSSS

DSSS CG=9dB

O-QPSK Mod.

2MC/s

Half Sine Pulse Shaping

Equivalent to MSK Smaller side lobes, Constant Envelope

PDU Format

<table>
<thead>
<tr>
<th>SyncHdr</th>
<th>PHY Hdr</th>
<th>PHY PayLoad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>Start Of Frame</td>
<td>Frame Len</td>
</tr>
<tr>
<td>4 Bytes</td>
<td>1 Byte</td>
<td>1 Byte</td>
</tr>
</tbody>
</table>

CH-> 11 12

Channel spacing-5MHz

2405MHz 2480MHz

Vikram Sarabhai Space Centre, Trivandrum, India, 2019
Typical Communication System Architecture

Transmitter
- **DATA**
- **CODING**
- **CHANNEL/SOURCE**
 - MODULATOR
 - FM/QAM/OFDM
- **MULTIPLE ACCESS**
 - TDMA/FDMA/CDMA
- **D/A CONVERTER**
- **UP CONVERTER**
- **RF**

Receiver
- **DATA**
- **DE-CODING**
- **CHANNEL/SOURCE**
 - DE-MODULATOR
 - FM/QAM/OFDM
- **MULTIPLE ACCESS**
 - TDMA/FDMA/CDMA
- **A/D CONVERTER**
- **DOWN CONVERTER**
- **RF**
Using I/Q Modulator to Generate any RF Signal

A general representation of any RF signal

\[A \cos(2\pi f_c t + \phi) \]

- Amplitude
- Frequency
- Phase

\[\cos(\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) \]

\[A \cos(2\pi f_c t + \phi) = A \cos(2\pi f_c t) \cos(\phi) - A \sin(2\pi f_c t) \sin(\phi) \]

\[I \]

\[Q \]

\[A \cos(2\pi f_c t + \phi) \equiv I \cos(2\pi f_c t) + Q \sin(2\pi f_c t) \]

Basic SDR architecture

Vikram Sarabhai Space Centre, Trivandrum, India, 2019
Typical SDR System

Analog Front End
Filters, Mixer, ADC/DAC

Digital Front End
Digital Filters, Sample Rate Conversion

Baseband Processing
Modulation

Commercial-off-the-shelf hardware

Tunable RF Card
FMC

FPGA/Zynq Board
GigE

Host computer
SDR Changes the way how we think on RF Systems!

Traditional RF Prototyping

SDR Prototyping

Advantages
✓ Unprecedented application capabilities.
✓ Extremely modular solution.
✓ Allows adoption for different missions keeping required hardware changes minimal.
✓ SDR + FPGA/DSP \rightarrow allow implementing all changes in software, keeping hardware heritage intact.

Applications
❖ Re-configurable radio for deep space, inter-planetary missions and ground test applications.
❖ Integrated telemetry and telecommand systems for Launch vehicle/satellite missions.
❖ Inter and Intra stage Wireless Telemetry for Launch vehicles
AD9361-Agile RF SDR Transceiver

- RF 2 × 2 transceiver with integrated 12-bit DACs and ADCs
- TX band: 47 MHz to 6.0 GHz
- RX band: 70 MHz to 6.0 GHz
- Supports TDD and FDD operation
- Tunable channel bandwidth: <200kHz to 56MHz
- User Programmable Filters in Transmitter and Receiver
Model Based Design Makes SDR development simple and fast

A single shared development environment

- Virtual representation of a real-world system
- A way to manage a complex system
- Common design platform for entire design team
- Reduces hardware testing time by shifting design from lab to desktop

Enables:

- different levels of simulation

System architects can build prototypes with popular FPGA and SDR kits and hardware engineers can reuse those models for production deployment.

Verify operation before committing to hardware

Validate performance on chip

Deploy design on target system
SDR Model Based Design Flow with Matlab Simulink

System Modeling

Radio I/O

Implementation ready model

Standalone

Prototyping
Addressing Challenges in SoC Design Using Matlab

Zync SoC Design Flow

Requirements

Specification

System Design

Software / Hardware Partitioning

Hardware Development and Testing

Software Development and Testing

System Integration and Testing

PS validation

Matlab Simulink Model

PL validation

Design Partitioning

Embedded Coder

HDL Coder

(PS)

ARM

AXI4 Lite

(PL)

HDL IP Core

AD9361

AXI DMA

MATLAB EXPO 2019

Vikram Sarabhai Space Centre, Trivandrum, India, 2019
Matlab HDL Specific Techniques

Area Optimization - resource sharing

- Multipliers: 4
- Data rate: 1
- Base rate: 1
- Multipliers: 1
- Data rate: 4
- Base rate: 1

Speed Optimization

- Advanced pipelining options for pipeline distribution and automatic delay compensation

HDL work flow advisor

- HDL Workflow Advisor
- No need to recreate testbench in HDL
- Reuse existing system level model as testbench

HDL co-simulation

- Flexible testbench creation in Simulink
- Parameterized / Integrated multi-domain testbench

Back annotating a Simulink model with critical path timing

Other: Native floating point support, IP core interface
Our IEEE802.15.4 System Model

- BER Computation
- Channel Impairments
- SDR Tx
- SDR Rx
- IEEE802.15.4 Tx
- IEEE802.15.4 Rx

SNR
Timing & Freq offset
Power Delay Profile

Design Flow
1. Matlab Simulation
2. Modelling in Simulink
3. Performance assessment with AD9361 models
4. HDL compatible Models
5. Testing in Radio I/O mode
6. Splitting the design in to ARM & FPGA
7. Software Interface Model
8. Standalone Model(ARM & FPGA Programming)

- Transmitter and Receiver are partitioned to operate asynchronously.
- The transmitter must be capable of producing IEEE802.15.4 packets and the receiver should demodulate and decode the same correctly.
- The user must be able to program various signal/channel impairments for desired tests.
Overall Simulink Model-IEEE802.15.4 TxRx
Simulink Model for Channel Impairments

Input - Power delay Profile

- ChannelDelay
- Phase/Frequency Offset
- Rayleigh SISO
- Multipath Rayleigh Fading Channel
- AWGN
- Eb/No Control

Output - Power delay Profile
HDL compatible Simulink Model - Transmitter - Packetization & DSSS

Bit to Symbol

DSSS

PDU Formation

Vikram Sarabhai Space Centre, Trivandrum, India, 2019
It uses HDL compatible FFT and CORDIC based Magnitude calculation blocks.
It is a closed loop system based on digital PLL

PED is based on the structure of the desired receive constellation for OQPSK

\[e(k) = \theta_q(k) - \theta_d(k) \\
= \tan^{-1}\left(\frac{y'(kT_s)}{x'(kT_s)}\right) - \tan^{-1}\left(\frac{a_1(k)}{a_0(k)}\right) \]
HDL compatible Simulink Model – Timing recovery

- It is a closed loop system based on digital PLL
- It uses Zero crossing (ZC) Timing Error Detector
- ZC requires two or more samples/symbol
- It produces $e(n)$ of zero when one of the sampling position is at the zero intersection
- Resulting the other sample position occurring at or near the optimum position
HDL compatible Simulink Model – Preample Detection

Matched Filter
FIR filter with the coefficients as the preamble sequence

Modulus
$sqrt(I^2+Q^2)$ is approximated as $|L|+0.4*|S|$
HDL Code generation for IEEE802.15.4 Tx Model

Original Matlab Code of Transmitter

clr;
close all;
clear all;
N = 1016; % Number of bits to process (size of the maximum packet)
X = randi([0,1],1,N); % Random number generator
input = [0 input N];

bit_to_symbol_mapping
for q = 1:length(pdu)
 Pdu(q) = q+1;
end

apsr = 4;
chip_format = chip(apsr);

% modulation with Matlab com object
comsymbol = comcommodulator('BitInput',true,'SamplesPerSymbol',apsr,'PulseShape','Half Sine','Symbol
Waveform' - commodmodemod);% normal modulation

HDL Compatible Simulink Model

MATLAB EXPO 2019

Equivalent VHDL Code

Packetization/Bit2Symbol as hdlsrc\zigbee_hdl_tx_model_18a_hdl_setup\Bit2Symbol.vhd.
Packetization/Data Source as hdlsrc\zigbee_hdl_tx_model_18a_hdl_setup\Data_Source.vhd.
Packetization/Symbol2Chip/Convert2bits as hdlsrc\zigbee_hdl_tx_model_18a_hdl_setup\Convert2bit.vhd.
Packetization/Convert2Chip/Right as hdlsrc\zigbee_hdl_tx_model_18a_hdl_setup\Convert2Chip2Right.vhd.
Packetization/Symbol2Chip as hdlsrc\zigbee_hdl_tx_model_18a_hdl_setup\Symbol2Chip.vhd.
Packetization/PacketizerPM as hdlsrc\zigbee_hdl_tx_model_18a_hdl_setup\PacketizerPM.vhd.
Packetization as hdlsrc\zigbee_hdl_tx_model_18a_hdl_setup\Data_Generation_Packetization.vhd.
system as hdlsrc\zigbee_hdl_tx_model_18a_hdl_setup\Subsystem.vhd.
hdlsr\zigbee_hdl_tx_model_18a_hdl_setup\Pulse_Shaping.vhd.
SK Modulator Baseband as hdlsrc\zigbee_hdl_tx_model_18a_hdl_setup\QPSK_Modulator_Baseband.vhd.
hdlsr\zigbee_hdl_tx_model_18a_hdl_setup\Symbol_Mapping.vhd.

Vikram Sarabhai Space Centre, Trivandrum, India, 2019
Over The Air Transmission of IEEE 802.15.4 Packets in Radio I/O & Stand Alone modes

4 Msymbols/s complex data equivalent to 2Mc/s data up-sampled by 4, generated in MATLAB

1 Frame data stored in SDR Kit via LAN for playback

D/A Conversion

Up Conversion

PC

SDR kit

SMART RF 05 EB Kit from Ti

Packet Reception and Decoding

Channel Impairments Control & BER Display

MATLAB EXPO 2019

Vikram Sarabhai Space Centre, Trivandrum, India, 2019
Results

EVM Measurement

PSD of the transmitted signal captured with VSA

Coarse Frequency Estimation

I & Q Traces after ½ sine filtering

Packets captured with TI’s Smart RF EB05 kit

Received packets with Ti Smart RF Studio

PSD of the transmitted signal captured with VSA

EVM Measurement

Coarse Frequency Estimation

I & Q Traces after ½ sine filtering

Packets captured with TI’s Smart RF EB05 kit

Vikram Sarabhai Space Centre, Trivandrum, India, 2019
Benefits of model based SDR development

✓ A common model for different levels of the development
 - no duplication of effort, better collaboration
✓ Less chances of coding errors due to high level implementation
✓ Reduced verification effort.
✓ Easy signal analysis and performance measurement at different interfaces and levels of the design,
✓ Reusability and scalability of the model with less effort.
✓ Resource sharing and pipelining are much easier as compared to bare VHDL coding.
✓ Optimized HDL code and small FPGA resource consumption suitable to deploy in the actual flight systems also.
✓ A unified hardware platform for different communication applications.
✓ Fast prototyping of the concept buy just placing and interconnecting the subsystem models.
Speaker Details
Email: bibin_varghese@vssc.gov.in
bibinvarghesep@gmail.com
Linkedin: https://www.linkedin.com/in/bibin-varghese-480541b1/

Thank u..