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Key takeaways

▪ Verify and validate requirements earlier 

▪ Identify inconsistencies in requirements by using unambiguous 

assessments 

▪ Traceability from requirements to design and test 

“By enabling us to analyze requirements quickly, reuse designs from previous products, 

and eliminate manual coding errors, Model-Based Design has reduced development 

times and enabled us to shorten schedules to meet the needs of our customers.”

- MyoungSuk Ko, LS Automotive
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Requirements

Challenge: Errors introduced early but found late

Specification C/C++

Generated code

Most errors 

introduced

Unit test finds some 

errors 

Errors found during 

integration or in field
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Requirements

Cost of finding errors increases over time 

Specification C/C++

Generated code

Time

Testing
Cost
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Requirements

Challenges with requirements based verification

Specification C/C++

Generated code

Is requirement 

interpreted 

correctly?

Is the implementation 

functioning correctly?

Are all

requirements 

implemented?

How to avoid 

modifying the 

design for test?
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Simulink models for specification

Requirements C/C++
Design 

Model

Generated code

Model-Based Design enables:

▪ Early testing to increase 
confidence in your design

▪ Delivery of higher quality 
software throughout the 
workflow
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Multiple languages to describe complex systems

Requirements C/C++
Design 

Model

Generated code
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Ad-Hoc Testing: Explore behavior and design alternatives

Requirements C/C++
Design 

Model

Generated code
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Validate behavior earlier with simulation 
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Validate Behavior Earlier with Simulation 
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Complete Model Based Design

Code 

Generation

Requirements
Design

Model

Model used for 

production code 

generation

Simulink Models

C/C++

Generated code
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Systematically verify requirements

Requirements
Design

Model

Model used for 

production code 

generation

Simulink Models

C/C++

Generated code

Are all requirements implemented?

Is the implementation functioning correctly?

Are designs and requirements consistent?
Requirements 

Based Testing
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Integrate with requirements tools and author requirements 

Simulink Requirements

Authored Requirements

External Requirements

External 

Requirements

Requirements 

Managements 

Tools

• Import from:

• Word / Excel 

• IBM® Rational® 

DOORS® 

• ReqIF™ standard

• Update synchronizes 

changes from source

• Edit and add further 

details to import

• Author requirements 

• Export ReqIF

• Enables roundtrip with 

external tools 

Import

Update

Export
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Roundtrip workflow with external tools thru ReqIF

Simulink Requirements

Authored Requirements

External Requirements

External 

Requirements

Requirements 

Managements 

Tools

• Import from:

• Word / Excel 
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• ReqIF™ standard
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• Export ReqIF

• Enables roundtrip with 
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Test Case

Requirements Verification with Simulink 

Implemented

By

Test Harness

Inputs

Test Sequence

Signal Editor

Assessments

Test 

Assessments

MATLAB Unit Test

Verified

By

Simulink / Stateflow

Simulink Test
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file (input)
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Requirements



16

Test Case
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Example: Verifying Heat Pump Controller Requirements 

Requirements in DOORS
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Example: Heat Pump Controller Implementation 
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Link requirements to implementation in model 
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Work with Model and Requirements with Requirements 

Perspective

Requirement

Annotations

Badges

Implementation and 

Verification Status

Browser

Property 

Inspector
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Isolate Component Under Test with Test Harness
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Test Sequence Block: Step-based and temporal test sequences
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Test Assessments: Formalize and execute requirements

Activate Heat Pump

If the temperature difference 

exceeds 2 degrees for more 

than 2 seconds, then the 

pump shall activate for at 

least 2 seconds
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Author temporal assessments using form based editor
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Execute assessments to verify requirements
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Locate implementation of requirement using link
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Translate textual requirements into unambiguous Temporal 

Assessments

• Compose assessments 

using form based editor

• View assessments as 

English-like sentence

• Review and debug 

temporal assessment 

results

• Link to requirements

Temporal Assessment Editor

View and Debug Assessment Results
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Track Implementation and Verification

Implemented

Justified

Implementation Status

Missing

Passed

Failed

Unexecuted

Missing

Verification Status
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Observers: Separate test/verification logic from design

• Access nested signals 

without signal lines or 

changing dynamic response

• Avoid modifying interface 

for testing 

• Simplify design and test by 

avoiding additional signal 

lines

Design Model
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Observers: Separate test/verification logic from design

• Access nested signals 

without signal lines or 

changing dynamic 

response

• Avoid modifying interface 

for testing 

• Simplify design and test by 

avoiding additional signal 

lines

Observer Model

Design Model
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LS Automotive Reduces Development Time for Automotive 

Component Software with Model-Based Design

Challenge

Shorten development times for embedded control 

software used in automotive switches and components

Solution

Use Model-Based Design to model controller designs, 

run simulations, verify customer specifications, and 

generate error-free production code

Results

▪ Specification errors detected early

▪ Proven development approach established

▪ 80% Coding errors eliminated

“By enabling us to analyze requirements quickly, reuse designs 

from previous products, and eliminate manual coding errors, 

Model-Based Design has reduced development times and 

enabled us to shorten schedules to meet the needs of our 

customers.”

- MyoungSuk Ko, LS Automotive

Link to user story

An LS Automotive door area unit.

https://www.mathworks.com/company/user_stories/ls-automotive-reduces-development-time-for-automotive-component-software-with-model-based-design.html
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Summary

▪ Verify and validate requirements earlier 

▪ Identify inconsistencies in requirements 

by using unambiguous assessments 

▪ Traceability from requirements to design 

and test 
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Learn More

Key products covered in this presentation: 

▪ Simulink Requirements

▪ Simulink Test

Learn more at Verification, Validation and Test Solution Page:

mathworks.com/solutions/verification-validation.html

https://www.mathworks.com/products/simulink-requirements.html
https://www.mathworks.com/products/simulink-test.html
https://www.mathworks.com/solutions/verification-validation.html

