
1© 2015 The MathWorks, Inc.

Simplifying Requirements Based

Verification with Model-Based

Design

Vamshi Kumbham

Pilot Engineering

2

Key takeaways

▪ Verify and validate requirements earlier

▪ Identify inconsistencies in requirements by using unambiguous

assessments

▪ Traceability from requirements to design and test

“By enabling us to analyze requirements quickly, reuse designs from previous products,

and eliminate manual coding errors, Model-Based Design has reduced development

times and enabled us to shorten schedules to meet the needs of our customers.”

- MyoungSuk Ko, LS Automotive

3

Requirements

Challenge: Errors introduced early but found late

Specification C/C++

Generated code

Most errors

introduced

Unit test finds some

errors

Errors found during

integration or in field

4

Requirements

Cost of finding errors increases over time

Specification C/C++

Generated code

Time

Testing
Cost

5

Requirements

Challenges with requirements based verification

Specification C/C++

Generated code

Is requirement

interpreted

correctly?

Is the implementation

functioning correctly?

Are all

requirements

implemented?

How to avoid

modifying the

design for test?

6

Simulink models for specification

Requirements C/C++
Design

Model

Generated code

Model-Based Design enables:

▪ Early testing to increase
confidence in your design

▪ Delivery of higher quality
software throughout the
workflow

7

Multiple languages to describe complex systems

Requirements C/C++
Design

Model

Generated code

8

Ad-Hoc Testing: Explore behavior and design alternatives

Requirements C/C++
Design

Model

Generated code

9

Validate behavior earlier with simulation

10

Validate Behavior Earlier with Simulation

11

Complete Model Based Design

Code

Generation

Requirements
Design

Model

Model used for

production code

generation

Simulink Models

C/C++

Generated code

12

Systematically verify requirements

Requirements
Design

Model

Model used for

production code

generation

Simulink Models

C/C++

Generated code

Are all requirements implemented?

Is the implementation functioning correctly?

Are designs and requirements consistent?
Requirements

Based Testing

13

Integrate with requirements tools and author requirements

Simulink Requirements

Authored Requirements

External Requirements

External

Requirements

Requirements

Managements

Tools

• Import from:

• Word / Excel

• IBM® Rational®

DOORS®

• ReqIF™ standard

• Update synchronizes

changes from source

• Edit and add further

details to import

• Author requirements

• Export ReqIF

• Enables roundtrip with

external tools

Import

Update

Export

14

Roundtrip workflow with external tools thru ReqIF

Simulink Requirements

Authored Requirements

External Requirements

External

Requirements

Requirements

Managements

Tools

• Import from:

• Word / Excel

• IBM® Rational®

DOORS®

• ReqIF™ standard

• Update synchronizes

changes from source

• Edit and add further

details to import

• Author requirements

• Export ReqIF

• Enables roundtrip with

external tools

15

Test Case

Requirements Verification with Simulink

Implemented

By

Test Harness

Inputs

Test Sequence

Signal Editor

Assessments

Test

Assessments

MATLAB Unit Test

Verified

By

Simulink / Stateflow

Simulink Test

MAT / Excel

file (input)

MAT / Excel

File (baseline)

Requirements

16

Test Case

Requirements Verification with Simulink

Implemented

By

Test Harness

Inputs

Test Sequence

Signal Editor

Assessments

Test

Assessments

MATLAB Unit Test

Verified

By

Simulink / Stateflow

Simulink Test

MAT / Excel

file (input)

MAT / Excel

File (baseline)

Requirements

17

Example: Verifying Heat Pump Controller Requirements

Requirements in DOORS

18

Example: Heat Pump Controller Implementation

19

Link requirements to implementation in model

20

Work with Model and Requirements with Requirements

Perspective

Requirement

Annotations

Badges

Implementation and

Verification Status

Browser

Property

Inspector

23

Isolate Component Under Test with Test Harness

24

Test Sequence Block: Step-based and temporal test sequences

25

Test Assessments: Formalize and execute requirements

Activate Heat Pump

If the temperature difference

exceeds 2 degrees for more

than 2 seconds, then the

pump shall activate for at

least 2 seconds

26

Author temporal assessments using form based editor

27

Execute assessments to verify requirements

28

Locate implementation of requirement using link

29

Translate textual requirements into unambiguous Temporal

Assessments

• Compose assessments

using form based editor

• View assessments as

English-like sentence

• Review and debug

temporal assessment

results

• Link to requirements

Temporal Assessment Editor

View and Debug Assessment Results

30

Track Implementation and Verification

Implemented

Justified

Implementation Status

Missing

Passed

Failed

Unexecuted

Missing

Verification Status

31

Observers: Separate test/verification logic from design

• Access nested signals

without signal lines or

changing dynamic response

• Avoid modifying interface

for testing

• Simplify design and test by

avoiding additional signal

lines

Design Model

32

Observers: Separate test/verification logic from design

• Access nested signals

without signal lines or

changing dynamic

response

• Avoid modifying interface

for testing

• Simplify design and test by

avoiding additional signal

lines

Observer Model

Design Model

33

LS Automotive Reduces Development Time for Automotive

Component Software with Model-Based Design

Challenge

Shorten development times for embedded control

software used in automotive switches and components

Solution

Use Model-Based Design to model controller designs,

run simulations, verify customer specifications, and

generate error-free production code

Results

▪ Specification errors detected early

▪ Proven development approach established

▪ 80% Coding errors eliminated

“By enabling us to analyze requirements quickly, reuse designs

from previous products, and eliminate manual coding errors,

Model-Based Design has reduced development times and

enabled us to shorten schedules to meet the needs of our

customers.”

- MyoungSuk Ko, LS Automotive

Link to user story

An LS Automotive door area unit.

https://www.mathworks.com/company/user_stories/ls-automotive-reduces-development-time-for-automotive-component-software-with-model-based-design.html

34

Summary

▪ Verify and validate requirements earlier

▪ Identify inconsistencies in requirements

by using unambiguous assessments

▪ Traceability from requirements to design

and test

35

Learn More

Key products covered in this presentation:

▪ Simulink Requirements

▪ Simulink Test

Learn more at Verification, Validation and Test Solution Page:

mathworks.com/solutions/verification-validation.html

https://www.mathworks.com/products/simulink-requirements.html
https://www.mathworks.com/products/simulink-test.html
https://www.mathworks.com/solutions/verification-validation.html

