
1© 2019 The MathWorks, Inc.

Making Software Safe and Secure 

with Team Collaboration

Vaishnavi H R

Application Engineer,Mathworks



2

Agenda

1. Making Software Safe and Secure

2. Polyspace Static Analysis

3. Team Collaboration with Polyspace



3

1. Making Software Safe and Secure



4

“Given that we cannot really show there are no more errors 

in the program, when do we stop testing?”

Brent Hailpern, Head of Computer Science

Dijstra, “Notes on Structured Programming” (1972) 
Hailern, Santhanam, “Software Debugging, Testing, and Verification”, IBM Systems Journal, (2002)

Program Testing
“Program testing can be used to show the presence of bugs, 

but never to show their absence”

Edsger Dijkstra, Computer Science Pioneer



5

Using Static Analysis to Make Software Safe and Secure

▪ Find bugs without code execution

– Code analyzed without running tests

– Identify bugs and coding rule violations

for MISRA, AUTOSAR, CERT

▪ Prove absence of critical run-time errors

– Identify code that will never experience 

errors regardless of run-time conditions

▪ Complements dynamic testing

– Used together, you can find more bugs

for higher quality code



6

When Software Safety and Security Matter

▪ Industries where safety and security matter

– Automotive, Aerospace, Medical Device, Industrial Machinery

▪ Governed by functional safety and other standards

– ISO 26262, DO-178, IEC 62304, IEC 61508

– MISRA, CERT, AUTOSAR

▪ Static analysis provides certification credits

– For standards such as ISO 26262 and DO-178



7

2. Polyspace Static Analysis

For software written in C, C++, and Ada



8

Proving Absence of Critical Run-Time Errors

float x, y;

…

x = x / (x – y);

▪ How many run-time errors are possible?

1. Divide by zero

2. Overflow

3. Uninitialized variables

▪ How to test all floating point variable combinations?

▪ How do you prove that this code will not fail?



9

Proving Absence of Critical Run-Time Errors

Proven by Polyspace that

run-time error will not occur



10

Proving Absence of Critical Run-Time Errors with Polyspace

Source 

Code View

Defect

List

Defect 

Details Filter 

Results



11

Proving 
Absence
of Critical 
Defects & 
Vulnerabilities
(33)

Defect & 
Vulnerability 
Checkers
(251)

Coding 
Standards, 
Cybersecurity 

Guidelines

Code 
Metrics

Code Prover
• Proves code Safe and Secure

• 33 most critical run-time checks

• Supports DO-178 and ISO 26262

Bug Finder
• Produce code metrics

• Check coding standards

• Find defects and vulnerabilities

Polyspace Tools



12

Polyspace Customer References

Electronic Steering Lock

KOSTAL Asia R&D Center Receives ISO 26262 

ASIL D Certification for Automotive Software

Alenia Aermacchi Develops Autopilot Software for 

DO-178B Level A Certification

Miracor Eliminates Run-Time Errors and Reduces 

Testing Time for Class III Medical Device Software



13

3. Team Collaboration with Polyspace



14

Workflow with New Polyspace Products in R2019a

1. Developers check-in code into repository, Build Engineer has configured Jenkins to run Polyspace analysis

2. Jenkins initiates Polyspace analysis run on the server (periodically or at program milestones)

3. Once Polyspace analysis run concludes, results are uploaded to Polyspace Access

4. Team Lead/Manager, QA, Developers use web browser to review results, open Jira defects, monitor quality metrics

Polyspace Bug 

Finder Server

Polyspace Code 

Prover Server

Server

2

Initiate

Upload 

Results Polyspace Bug 

Finder Access

Polyspace Code 

Prover Access

Polyspace Results

3

Web Browsers

Team Lead

Manager

QA 

Engineer 

4 Online Review

Source Code

Repository

Developer

Developer

Developer

Developer

1 Code Check-ins

Build 

Engineer

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwii8oS_-6PdAhXtQ98KHWfLC5YQjRx6BAgBEAU&url=https://marketplace.topdesk.com/jira-integration-by-topdesk/&psig=AOvVaw2h05vc4-AL-Ent-a3BfyIs&ust=1536240344328142


15

Team Collaboration Story

Bob is the Build Engineer

He has configured Polyspace in a Jenkins CI workflow

Quinn is a Quality Engineer

She is responsible for triaging software defects

Dara is a software developer

She is responsible for writing code and fixing defects

Martin is a project manager

He is responsible for software quality of the project

Eric is a Simulink and Embedded Coder user

He is responsible for generating code from models



16

Bob is the Build Engineer

He has configured Polyspace in a Jenkins CI workflow



17

Quinn is a Quality Engineer

She is responsible for triaging software defects

▪ She received an email notification from last 

night’s Jenkins initiated Polyspace analysis

▪ The email indicates several findings were 

found in her project

▪ She click on the link in the email to view the 

findings in Polyspace Access

Bob Builder

To: Quin Quality



18

Quinn is a Quality Engineer

She is responsible for triaging software defects



19

Project Zen

Dara is a software developer

She is responsible for writing code and fixing defects

▪ Dara has been assigned 2 

defect tickets in Jira

▪ She opens the first JIRA ticket 

and clicks the Polyspace 

Access link 



20

Dara is a software developer

She is responsible for writing code and fixing defects



21

Eric is a Simulink and Embedded Coder user

He is responsible for generating code from models



22

Eric is a Simulink and Embedded Coder user

He is responsible for generating code from models



23

Martin is a project manager

He is responsible for software quality of the project



24

Summary

▪ Use Polyspace to achieve high quality software with reduced testing effort

– Prove that your code will not cause safety hazards or security issues

▪ Polyspace fits software development workflows

– Jenkins for build automation and Jira for bug tracking

▪ Supports team based collaboration

– Results published for web-browser based review by developers and quality engineers

– Dashboards to show quality metrics for project and safety managers.  



25

Security

Standards:

• CERT-C

• CWE

• ISO 17961

• MISRA-C:2012 Appendix 1

• Tainted data tracking

Safety

Standards:

• DO-178 (aero)

• ISO 26262 (auto)

• IEC 61508 (industrial)

• IEC 62304 (medical)

• EN 50128 (rail)

• MISRA

• AUTOSAR

Polyspace Helps Makes C, C++, and Ada Safe and Secure

Quality

• Coding Standards

• Find Probable Bugs, Defects

• Code Metrics

• Formal Method: Runtime Behavior, Debugger-like view

• Review Scopes / Software Quality Objectives

• Simulink Integration: trace issues in generated code back to model

Reliability and Robustness

Code Proving

• Prove absence of critical runtime errors (or find even the slightest vulnerability)

• Exhaustive: all possible inputs, control flows, data flows (no instrumentation, execution, test cases)

• Sound: no false negatives



26

Learn More

Visit MathWorks Code Verification Solution Page:

https://www.mathworks.com/products/polyspace.html

https://www.mathworks.com/products/polyspace.html


27

Polyspace for C/C++ Code Verification 

This two-day course discusses the use of Polyspace Bug Finder™ and
Polyspace Code Prover™ to prove code correctness, improve software
quality metrics, and ensure product integrity.

Topics include: 

▪ Creating a verification project 

▪ Reviewing and understanding verification results 

▪ Emulating target execution environments 

▪ Handling missing functions and data 

▪ Managing unproven code (color-coded in orange by Polyspace® products) 

▪ Applying MISRA C® rules 

▪ Reporting 



28

Thank You


