MATLAB-SIMULINK MODELING OF FUZZY SCHEDULING ALGORITHM FOR OPERATING SYSTEM

VARDHANA M

Agenda

- Problem Statement
- Workflow
- Tools Used
- Results
- Takeaways

PROBLEM STATEMENT

Problem Statement

- KPI
 - Waiting time
 - Turnaround time
- Multiple deciding factors
- Scheduling is no longer one dimensional
- Ambiguity in decision making
- Real Time Scheduling issues
- CPU Overloading
- Deadline Overrun Scenario handling

WORKFLOW

Workflow

Fuzzy System Design

Simulink Modeling

Determine input/output linguistic variables

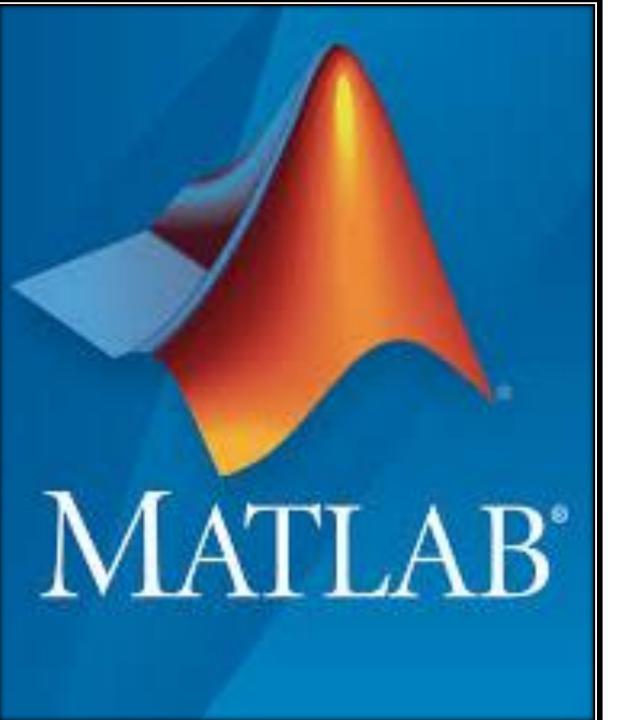
Determine input/output nembership functions Develop IF-Then Rules based on knowledge base

Develop the Scheduling System

Import Fuzzy System Generate Process and Simulate

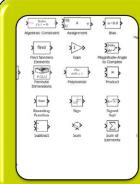
General Purpose System

Real Time System


Heavily Loaded System

Deadline Overrun

TOOLS USED

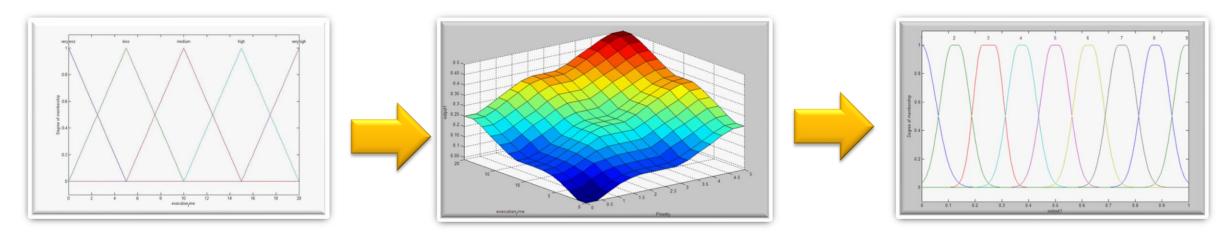


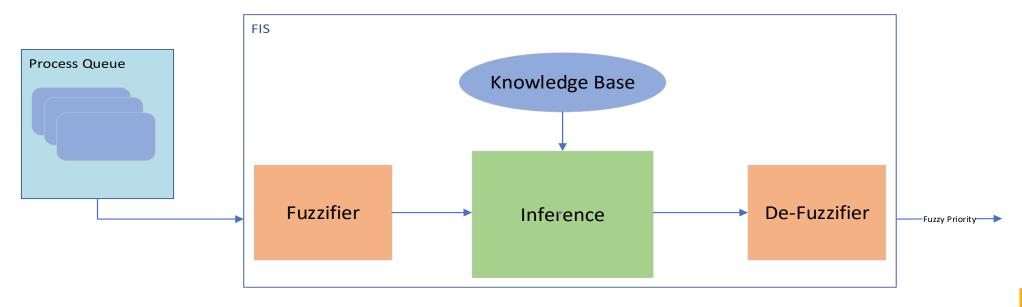
Tools Used

Fuzzy Logic Toolbox

- Analyze
- Design
- Simulate

Simulink


- Design
- Simulate



RESULTS

Fuzzy Scheduling System

KPI for General Purpose System with N=5

FCFS: First Come First Serve SJF: Shortest Job First PS: Priority Scheduling

Algorithm	Case 1	Case 2	Case 3	Case 4	Case 5
FCFS	16.2	17.2	20.2	23.6	10.4
SJF	14	10.8	11	21.2	10.4
PS	19.8	16	23.4	25	19.8
Proposed	17	11.2	12.6	23.4	12.6

Algorithm	Case 1	Case 2	Case 3	Case 4	Case 5
FCFS	26.4	27.4	30.2	37	20.4
SJF	24.2	21	21	34.6	20.4
PS	30	26.2	33.4	38.4	29.8
Proposed	27.2	21.4	22.6	36.8	22.6

Average Waiting Time for Randomly Generated Processes with N = 5

Average Turnaround Time for Randomly Generated Processes with N = 5

5 set of process are generated with random execution time and are scheduled using general purpose Scheduling Algorithm and KPIs are presented

KPI for General Purpose System with N=10

FCFS: First Come First Serve SJF: Shortest Job First PS: Priority Scheduling

Algorithm	Case 1	Case 2	Case 3	Case 4	Case 5
FCFS	72.3	84.2	50.8	62.6	75.8
SJF	43.5	65.7	27.4	40.9	47
PS	64.9	81.3	66.6	65.1	75.2
Proposed	48.1	70.4	36.9	48.4	58.9

Algorithm	Case 1	Case 2	Case 3	Case 4	Case 5
FCFS	87.1	104.5	63.2	76.5	91.8
SJF	58.3	86	39.8	54.8	62.4
PS	79.7	101.6	79	79	90.6
Proposed	62.9	90.7	49.3	62.3	74.3

Average Waiting Time for Randomly Generated Processes with N = 10

Average Turnaround Time for Randomly Generated Processes with N = 10

With increased number of process in ready queue, proposed algorithm performs better than FCFS and PS algorithm

Results: Real Time System

RM: Rate Monotonic EDF: Earliest Deadline First LLF: Lowest Laxity First

Process ID	Period	Execution Time
P1	2	1
P2	5	1
P3	7	2

Process ID	Period	Execution Time
P1	2	1
P2	4	1
P3	7	2
P4	10	3

Highly Loaded System with loading factor 0.98

Overloaded System with Loading factor 1.33

- With underloaded Scenario, RM policy fails to schedule the process, but EDF, LLF and Proposed Algorithm effectively schedule the process within the deadline.
- With overloaded Scenario, Proposed Algorithm performs better than RM policy and equally efficient as EDF and LLF

Results: Overload Scenario

RM: Rate Monotonic EDF: Earliest Deadline First LLF: Lowest Laxity First

Process ID	Period	Execution Time
P1	2	1
P2	4	1
P3	8	3

Algorithm		P1	P2	P3
Expected		4	2	3
RM	Scheduled	4	2	2
	Miss	0	0	1
EDF	Scheduled	4	2	2
	Miss	0	0	1
LLF	Scheduled	4	2	2
	Miss	0	0	1
PROPOSED	Scheduled	4	2	2
	Miss	0	0	1

OVERLOADED SYSTEM WITH LOADING FACTOR 1.125

OBSERVATIONS FOR THE PROCESSES IN READY QUEUE

For an Overload Scenario, with loading factor 1.125 all the algorithms miss P3

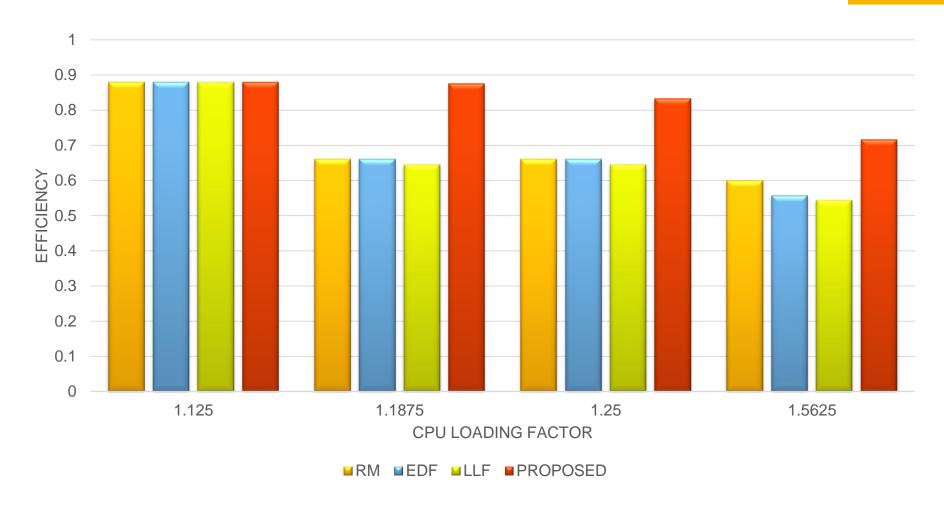
Results: Overload Scenario

RM: Rate Monotonic EDF: Earliest Deadline First LLF: Lowest Laxity First

Process ID	Period	Execution Time
P1	2	1
P2	4	1
P3	8	3
P4	16	1

Algorithm		P1	P2	P3	P4
Expected		8	4	6	1
RM	Scheduled	8	4	4	0
	Miss	0	0	2	1
EDF	Scheduled	8	4	4	0
	Miss	0	0	2	1
LLF	Scheduled	8	3	5	0
	Miss	0	1	1	1
PROPOSED	Scheduled	8	4	3	1
	Miss	0	0	3	0

Overloaded System With Loading Factor 1.1875


Observations for the processes in Queue

- For an overloaded scenario with loading factor 1.875, RM, EDF and LLF miss at least 2 process
- Proposed Algorithm miss only process P3

Results

RM: Rate Monotonic EDF: Earliest Deadline First LLF: Lowest Laxity First

TAKEAWAYS

Takeaways

- Fuzzy Logic Based Scheduling Algorithm provides better performance as with conventional algorithms
- Fuzzy Logic Tool box by MATLAB enables effective modeling and simulation of Fuzzy Inference System.
- Simulink Modeling is carried out to evaluate the performance of the proposed algorithm

SECURE CONNECTIONS FOR A SMARTER WORLD