



# Development and Testing of AMT Control Strategy Using Model Based Design Method

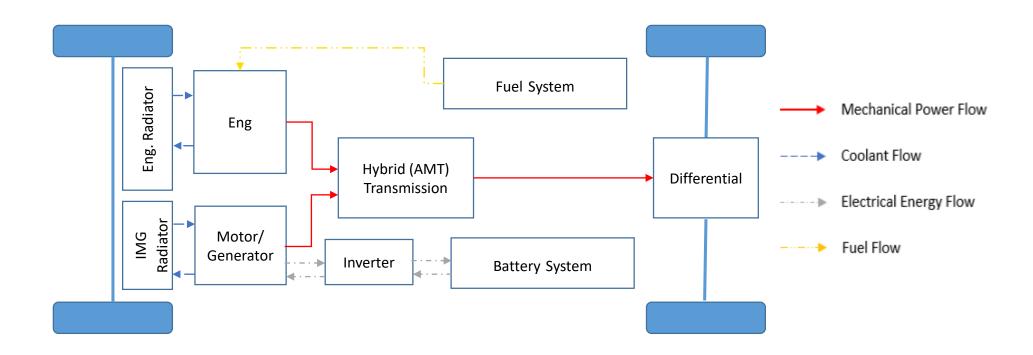
By : Ajitsinh A. Yadav Engineering Research Centre Tata Motors





### Contents

- 1. Introduction: Background and Target
- 2. Transmission Control Module (TCM)
- 3. Gear Shift Subsystem Block Diagram
- 4. System Requirements: A Brief Overview
- 5. Scope of Work
- 6. Control System Design
- 7. Plant Model
- 8. LABCAR: Hardware-in-Loop System (HIL)
- 9. Rapid Prototyping


- 10. Rapid Prototyping: MotoHawk Interface
- 11. System Layout for HIL Testing
- 12. Verification and Validation (V&V) Test Plan
- 13. Requirement Traceability and Consistency Check
- 14. V&V: Model Coverage
- 15. Recalibration, Fault Detection and HIL Testing
- 16. Mathworks Tools in Development Process





### Introduction: Background and Target

### Parallel Hybrid Concept:



**Target**: Development of Transmission Control Submodule for a parallel hybrid prototype

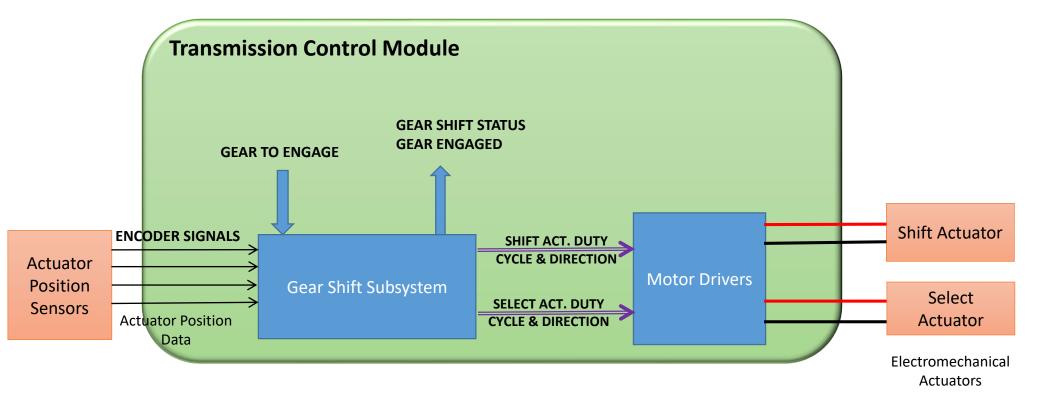




### **Transmission Control Module**

- The main function of the transmission control unit is to control the hybrid transmission(refer fig. in slide above) and the gear shift mechanism for the multi-speed gearbox which is a part of hybrid transmission.
- The gearshift mechanism consists of two electromechanical actuators for selection of gear rail (1-2, 3-4, 5-6) henceforth called 'Select Actuator' and for shifting from neutral into a gear henceforth called 'Shift Actuator'.
- It executes the following tasks:
  - Gear shift strategy (decide when to shift gear)

Gear shift execution (drive/control actuators)


- Power split mechanism lock/unlock
- Motor control for synchronization while shifting gears
- For this presentation we focus on a subsystem of TCM, which drives and controls actuators to execute gear shift





# Gear Shift Subsystem Block Diagram

- The block diagram below shows a subsystem from the transmission control module
- We are going to focus our attention on this subsystem for the rest of presentation
- A brief overview of system requirements is given in the slide below







### Scope of Work

We followed a proprietary '5 Level Model Based Development V Model' framework for product development, testing and validation

Following activities are carried out:

- Requirements: Definition and Management
- Proof of Concept/Model Development using Model Based Design tools, MATLAB, Simulink and Stateflow
- Model in Loop Testing
- Rapid Prototyping
- Hardware in Loop Testing





### **System Requirements: A Brief Overview**

Following is a list of some of the system requirements.

- System should be able to drive and control actuators to engage desired gear
- System should inform about status of gear shift i.e. gear shift in progress/completed
- Feedback about gear engaged eg. 1,2,3 etc
- Shift time constraint eg. Shift within 'X' secs.
- Position accuracy of actuators should be within tolerance
- Repeatability
- Other diagnostic and error 'flag' requirements

Example:

When the system completes a gearshift(refer section 'Terminology' above for definition of 'gearshift complete'), the function shall set the value of output signal **Gear\_Shift\_Status** equal to 1.



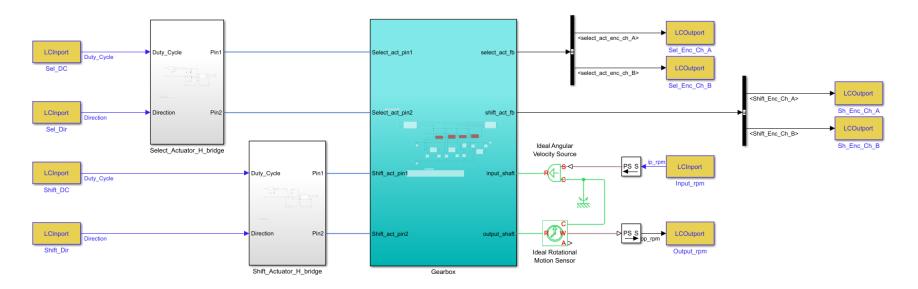


### **Control System Design**

- Top Down approach was used for system design
- Top level system model was created using empty 'shells' for subsystems
- Subsystems are interfaced using buses
- Buses are defined using bus objects
- Bus objects allowed better control and traceability
- Bus objects are under revision control
- Simulink Projects helped in organizing files and setting up workspace
- For version control we used Simulink's built in source control tools






# **Plant Model**

Plant model of a seven speed manual transmission was created

Plant Model was created using Simscape and Simscape Driveline toolboxes in Simulink

Simscape greatly simplified modeling process because:

- It allows use of physical components instead of modeling based on governing equations
- Connections are bi-directional







# Plant Model (continued..)

The following components/effects were modeled:

- Electromechanical actuators with encoders
- Shift linkages, shift fork, shift sleeve, detent mechanism
- Synchronizers, dog clutch, gear pair
- Custom components also created for plant model in Simscape with support from Mathworks team
- In the model, the force to be applied by the shift actuator for synchronization was a function the inertias in the system, synchronizer parameters and the speed difference between input and output gears
- The current drawn by the actuator is proportional to the force required for synchronization





# LABCAR: Hardware-in-Loop System (HIL)

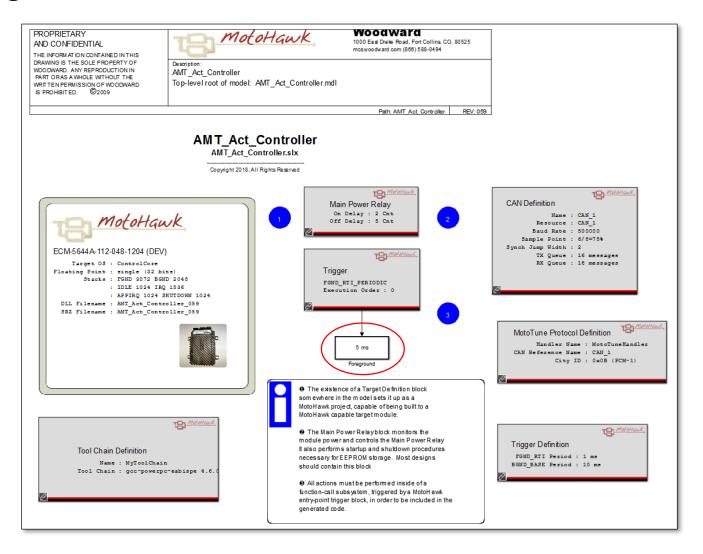
- LABCAR is the HIL system for automotive ECUs developed by ETAS GmbH
- We have used this system for our HIL testing activities
- LABCAR architecture consists of the following system components<sup>#</sup>:
  - Real-time simulation target, model configuration, signal I/O cards, operator interface, extensions
- LABCAR supports MALTAB, Simulink and Simulink Coder
- Simulink coder generates code for model using Simscape components. Code for Simscape blocks generated separately.
- LABCAR uses its own Target Language Compiler (TLC). However Simscape code does not pass through TLC.
- Simscape pre-compiled libraries are not used by LABCAR
- Hence, static runtime libraries needed by code generated by Simscape need to be compiled during code generation

#: LABCAR Component Overview HIL Systems: https://www.etas.com/en/products/solutions\_labcar\_component\_overview.php





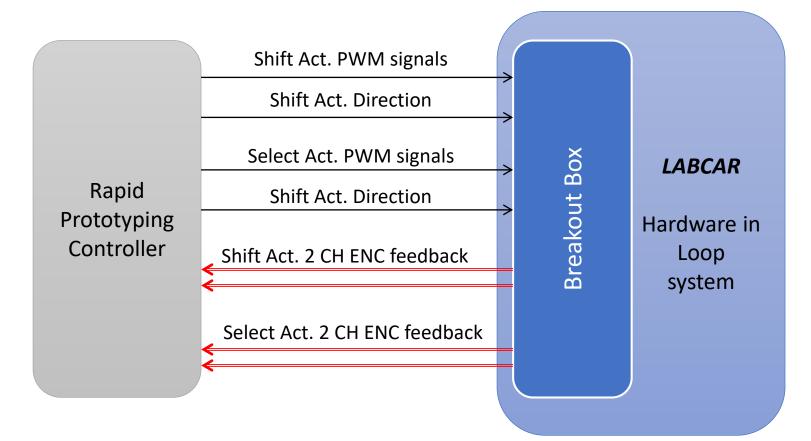
# **Rapid Prototyping**


- The control strategy developed for the gear shift subsystem is deployed on MotoHawk Controller
- MotoHawk Controller is an embedded control module developed by Woodward Inc. for automotive applications<sup>#</sup>.
- MotoHawk is an application development tool built on top of Matlab and Simulink.
  - It is used to program MotoHawk Controllers
  - It leverages the powerful capabilities of Simulink to develop and deploy application software on MotoHawk Controllers
  - It has its own library of components which can be accessed through Simulink Library Browser
- MotoTune is the application used for calibrating the controller

# : MotoHawk Control Solutions: https://www.woodward.com/WorkArea/DownloadAsset.aspx?id=2147484104






### **Rapid Prototyping: MotoHawk Interface**







### **System Layout for HIL Testing**







# Verification and Validation (V&V) Test Plan

- Verification and Validation was carried out as per a prescribed framework
- Following activities were carried out

| Stage/Level in V Model | Tests Carried Out                                                                                           |
|------------------------|-------------------------------------------------------------------------------------------------------------|
| Model Development      | Requirement Traceability                                                                                    |
|                        | Consistency Checks                                                                                          |
|                        | Check compliance to MAAB guidelines                                                                         |
| MIL Testing            | Functionality tests using test cases generated through DOE                                                  |
|                        | Model Coverage, Decision Coverage                                                                           |
|                        | Formal Verification using Simulink Design Verifier                                                          |
| SIL Testing            | Functionality tests                                                                                         |
| HIL Testing            | Functionality tests                                                                                         |
|                        | Test to verify compliance to set targets of shift time, shift accuracy, repeatability, fault detection etc. |

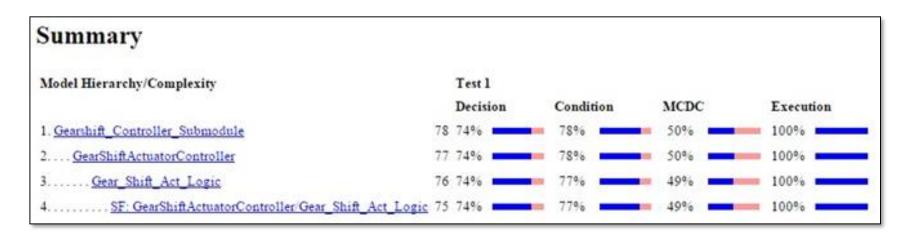




### **Requirement Traceability and Consistency Check**

Requirements Traceability Report for Gearshift\_Controller\_Submodule

Image: Control of Contents
Image: Control of Cont


| □ Requirements Consistency Checking |                                                                                                             |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 0                                   | Identify requirement links with missing documents                                                           |
|                                     | Passed                                                                                                      |
| 0                                   | Identify requirement links that specify invalid locations within documents                                  |
|                                     | Passed                                                                                                      |
| 0                                   | Identify selection-based links having description fields that do not match their requirements document text |
|                                     | Passed                                                                                                      |
| 0                                   | Identify requirement links with path type inconsistent with preferences                                     |
|                                     | Passed                                                                                                      |





# **V&V: Model Coverage**

- Model Coverage checked using Simulink Design Verifier
- Detailed report gives instances where certain combinations have not occurred.
- Using state flow debugger we identify root cause of coverage issue and modify the model
- Following is a snapshot from the Model Coverage Report







# **Recalibration, Fault Detection and HIL Testing**

- Repeatability in actuator displacement is ensured by recalibrating the displacement encoders.
- System recalibrates itself during operation
- Software has routines to detect faults in actuation system
- HIL tests were carried out to verify functionality of system
- HIL testing was also done to verify compliance to
  - set targets of shift time,
  - shift accuracy, repeatability,





### **Mathworks Tools in Development Process**

- Mathworks has built an ecosystem of tools around Model Based Product Development Process
- Mathworks tools were used in all stages of product development including
  - Requirements linking, traceability and consistency check using Simulink Requirements
  - Project management and revision control
  - Controller and plant model development using Simulink, Stateflow and Simscape
  - Model-in-loop testing
  - V&V activities like checking against standards, checking against errors, proving properties etc.
  - Model and Code optimization by doing code coverage and decision coverage tests
- These tools provided clear visibility, helped reduce development time, helped develop robust and optimized code, allowed collaboration on development activities etc.
- Mathworks tools integrate seamlessly with third party tools while retaining most of their functionality





# THANK YOU!