MATLAB EXPO 2019

Developing and Implementing Digital Control for Power Converters

Naini Dawar

Electric vehicles and charging stations

Rail

Renewable energy

Lighting

Power Electronic Systems

Our Project Today

DC/DC LED Developer's Kit

Fig 1: TMDSDCDCLEDKIT

Fig4: DC/DC LED Lighting Board Block diagram with F28035

Challenges for Power Electronics Engineer

- Understand the impact of the power source and load
- Testing for a complete range of operating and fault conditions
- Designing and implementing digital controls using *only* SPICE simulator tools
- Catching errors during software-hardware integration testing
- Compliance to industry standards
- Development Time

Power Converter Control Design Workflow Tasks

1. Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode

2. Determine non linear switching and the thermal behavior of the converter

3. Design control algorithm based on time/frequency domain specification

4. Implement power electronic controls on an embedded processor

Let's get to it!

Power Converter Control Design Workflow Tasks

- Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode
- Determine non linear switching and the thermal behavior of the converter
- Design control algorithm based on time/frequency domain specification
- Implement power electronic controls on an embedded processor

Simscape model for DC-DC Sepic Converter

Simscape model for DC-DC Sepic Converter

Simscape model for DC-DC Sepic Converter

Ready

Ready

Recap: Size Inductor, Capacitor and Understand the Behaviour in Continuous and Discontinuous mode.

What we did:

- Use simulation to design DC to DC converters
- Optimize component sizing using simulation driven analysis

Power Converter Control Design Workflow Tasks

- Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode
- Determine non linear switching and the thermal behaviour of the converter
- Design control algorithm based on time/frequency domain specification
- Implement power electronic controls on an embedded processor

DC-DC Sepic converter with Non-Linear Switching Dynamics

Ready

ode23t

Comparison of N-Channel MOSFET Characteristics With Datasheet

Comparison of N-Channel MOSFET Characteristics With Datasheet

Ready

Recap: Determine Power Losses and Simulate Thermal Behaviour of the Converter.

Conduction loss

What we did

- Use semiconductor blocks from Simscape Electrical to model the nonlinear switching behavior of SEPIC converter
- Leverage the multi-domain simulation capability of Simscape in understanding the thermal dynamics

Power Converter Control Design Workflow Tasks

- Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode
- Determine non linear switching and the thermal behavior of the converter
- Design control algorithm based on time/frequency domain specification
- Implement power electronic controls on an embedded processor

DC/DC Sepic Converter Voltage Mode Control (VMC)

Ready

92%

Controller Parameters: P = 0 I = -1e+0

Plant Parameters: K = 3.4373, $T_1 = 0.04$

Controlling PID parameters

		×					
Controller Parameters							
	Tuned	Block					
Р	0.27328	1					
I	38.0456	1					
D	n/a	n/a					
N	n/a	n/a					
Performance and Robustness							
	Tuned	Block					
Rise time	0.00864 seconds	0.00342 seconds					
Settling time	0.0382 seconds	0.0351 seconds					
Overshoot	5.6 %	32.9 %					
Peak	1.06	1.05					
Gain margin	147 dB @ 2.68e+05 ra	361 dB @ 3.14e+05 r					
Phase margin	60 deg @ 169 rad/s	45.7 deg @ 349 rad/s					
Closed-loop stability	Stable	Stable					

Ontroller was re-tuned using the new plant "Plant1"

• •• s	epic_new_closedlo	pp_tune/MCU/Software * - Simulink		- 🗆 ×
File	Edit View Displa	/ Diagram Simulation Analysis Code Tools Help		
4		$\Rightarrow \land \blacksquare @ - \blacksquare - @ < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ < < > > 0 @ - = - @ - = = = = = = @ - = = @ - @ = = @ - = @ - = = = =$	0.8 Normal • • • • • • • • • • • • • • • • • • •	
Sof	tware	Block Parameters: Discrete PID Controller	×	
۲	Sepic_new_clos		Sample time (-1 for inherited): -1	
Q		Oiscrete-time	Integrator and Filter methods:	
K 7	Vout1 Voltage I	 Compensator formula 		
≠	Vout1 Max Volt Scaling : 3.3 * 2	P + 1	$I \cdot T_s = \frac{1}{1}$	
A∃				
\sim		Controller parameters	State Attributes	
		Source: internal		
		Proportional (P): 0.29875551672997	e	double
		Integral (I): 37.8468024852967		TBPRD1
		Automated tuning		
		Select tuning method: Transfer Function Based (PID Tuner A		
		Enable zero-crossing detection		
			~	
01		<	> >	
h			OK Cancel Help Apply	
>>				

Ready

Recap: Design Control Algorithm Based on Time/Frequency Domain Specifications

What we did

- Identify plant model from input output simulation data
- Use auto tuning algorithms to tune the control gains

MATLAB EXPO 2019

MathWorks[®]

Power Converter Control Design Workflow Tasks

- Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode
- Determine non linear switching and the thermal behavior of the converter
- Design control algorithm based on time/frequency domain specification
- Implement power electronic controls on an embedded processor

MATLAB EXPO 2019

Developer Kit

Implementing Control for Power Converters on TI DC-DC LED

MathWorks[®]

Fast Code Generation Using Embedded Coder Quick Start

SIMULINK MODEL

ntents	14 */
mmary	<pre>15 16 #include "Amplifier0.h" 17</pre>
bsystem Report	18 /* Previous zero-crossings (trigger) states */
de Interface Report	19 PrevZCX rtPrevZCX; 20
aceability Report	21 /* Real-time model */
tic Code Metrics Report	<pre>22 RT_MODEL rtM_; 23 RT_MODEL *const rtM = &rtM_;</pre>
de Replacements Report	24 25 /* Model step function */
nerated Code	<pre>26 void Amplifier@_custom(const int32_T arg_In, boolean_T arg_Trigger, int32_T 27 *arg_Out)</pre>
Main file	28 {
ert_main.c	29 /* Outputs for Triggered SubSystem: ' <root>/Amplifier' incorporates: 30 * TriggerPort: '<u><s1>/Trigger</s1></u>'</root>
Model files	31 */ 32 /* Innort: ' <root>/Triager' */</root>
Amplifier0.c	if (arg_Trigger && (rtPrevZCX.Amplifier_Trig_ZCE != POS_ZCSIG)) {
Amplifier0.h	<pre>34 /* Outport: '<root>/Out' incorporates: 35 * Gain: '<u><s1>/Gain</s1></u>'</root></pre>
Shared files (2)	36 * Inport: ' <root>/In' 37 */</root>
	<u>38</u> *arg_Out = arg_In << 1;
	39 } 40
	<pre>41 rtPrevZCX.Amplifier_Trig_ZCE = arg_Trigger; 42</pre>
	to the first of Tennests (Tennest #1

GENERATED CODE

sb

Control Algorithm deployment to TI controller and Parameter Tuning using External Mode

DC_DC_LED_Implementation/PI_Controller_ISR - Simulink – 🗇 🗙	
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> isplay Diag <u>r</u> am <u>S</u> imulation <u>A</u> nalysis <u>C</u> ode <u>T</u> ools <u>H</u> elp	
123 • □ • 🔚 <= ↑ ↑ 📲 🚳 • = • • • • • • • • • • • • • • • • •	
PI_Controller_ISR	
Add-On Explorer	- 0 X
Contribute Ma	anage Add-Ons
ADC INT	Q
	×
Installed C2000 Processors 🖓 🖓 Enter search term V 🔌 V 🔯 V 🔄 V 🖶 2	
by MathWorks Embedded Coder Team Embedded Coder Support Package for Texas Instruments C2000 Processors/C2802	x
C2802x Caused antimized for C2000 MC Deep Learning Toolbox C2802x	x/03x/05x/06x C2802x/03x/06x
Cenerate code optimized for C2000 MC > DSP System Toolbox	
Hardware Support > Embedded Coder	ADC AIO DI
C2802x/03x/05x/06x	ADC AnalogIO Input
A4 Overview C2803x	2802x/03x/06x C2802x/03x/06x
ADC DataType	
C280x	AIO DO COMP
Editor's Note: Popular File 2018	gIO Output COMP
C2833x C2834x	C2802x C2802x
This support package is curren	GPIOX GPIOX
software for MATLAB R2016b a F2807x	.PIO DI GPIO DO
and workaround, see this Bug F2837xS	ital Input Digital Output
Memory Operations	C28x C2802x/03x/05x/06x
Ready C28x DMC	TS
C28x IQmath e	eCAP ePWM
Scheduling Target Communication	eCAP ePWM
Embedded Coder [®] Support Package for Texas Instrumen	C28x C28x
> HDL Coder	RD > >WD
MATLAB EXPO 2019	C RCV I2C XMT

Implementation Of Power Electronics Control On Embedded Processor

Recap: Implement Power Electronics Control on an Embedded Processor

What we did:

- Verify the controller for various test cases
- Generate code from MATLAB and Simulink models optimized for embedded controllers

How We Addressed The Challenges

- Understand the impact of the power source and load
- Testing for a complete range of operating and fault conditions
- Designing and implementing digital controls using *only* SPICE simulator tools
- Catching errors during software-hardware integration testing
- Compliance to industry standards
- Development Time

- Size inductor, capacitor and understand the behaviour in continuous and discontinuous mode
- Determine non linear switching and the thermal behavior of the converter
- Design control algorithm based on time/frequency domain specification

Implement power electronic controls on an embedded processor

Call To Action

- Get <u>power electronics control design trial</u> <u>package</u> with necessary tools for desktop modeling, simulation, control design
- Visit the demo booth on:
- Motor Control and Power Conversion with TI MCUs
- Read White Paper

<u>10 Ways to Speed up Power Conversion Control</u> <u>Design with Simulink</u>

Motor Control Modeling and Simulation Using MATLAB and Simulink Topics Covered:

- Simulink as a Platform for System and Plant Modeling
- Modeling and Simulation Electrical Systems Using Simscape
- System Analysis and Controller Design
- Control Algorithm Development for Three-Phase Motors

Please provide feedback for this block of sessions

- Scan this QR Code or log onto link below (link also sent to your phone and email)
- <u>http://bit.ly/expo19-feedback</u>
- Enter the registration id number displayed on your badge
- Provide feedback for this session

Email: ndawar@mathworks.com

LinkedIn: https://www.linkedin.com/in/naini-dawar-2b5856114/